Stereocontrolled synthesis of E-homoallylic sulfides with $\mathbf{1 , 4 , 5}$ related chiral centres using the [2,3] sigmatropic rearrangement of sulfonium ylides ${ }^{1}$

Richard C. Hartley, ${ }^{a}$ Ian C. Richards ${ }^{b}$ and Stuart Warren ${ }^{*, a}$
${ }^{a}$ University Chemical Laboratories, Lensfield Road, Cambridge CB2 IEW, UK
${ }^{b}$ AgrEvo, Chesterford Park, Saffron Walden, Essex CB10 IXL, UK

Abstract

E-Homoallylic sulfides with $1,4,5$ related chiral centres have been synthesised in a stereocontrolled way. An aldol condensation sets up the stereochemistry. Lactonisation with 1,2 arylsulfanyl migration followed by reduction and sulfur-assisted dehydration converts the aldols stereospecifically into allylic sulfides with 1,2 related chiral centres. Sulfonium salts are generated from the allylic sulfides at low temperature, and are deprotonated to give sulfonium ylides which undergo [2,3] sigmatropic rearrangement in good yield to give E-homoallylic sulfides with $1,4,5$ related chiral centres. The 1,4 relative stereochemistry results from stereospecific chiral transfer and is directly related to the allylic sulfide 1,2 relative stereochemistry. High 4,5 diastereoselectivity is also observed. An explanation for the observed stereoselectivity is provided.

Introduction

We developed an effective low-temperature method of generating sulfonium salts and ylides from simple allylic sulfides so as to carry out [2,3] sigmatropic rearrangements in high yields. ${ }^{2}$ We wished to use this method to investigate and exploit the stereochemical aspects of the [2,3] sigmatropic rearrangement. In the [2,3] sigmatropic rearrangement of sulfonium ylide $\mathbf{1}$ to homoallylic sulfide $2, a \mathrm{C}-\mathrm{S}$ bond is broken and a C-C bond formed (Scheme 1). The sulfonium ylide 1 contains three pieces of stereochemical information: a double bond geometry, a chiral centre at $\mathrm{C}(1)$ and a chiral centre at S . Following $[2,3]$ sigmatropic rearrangement the resulting homoallylic sulfide $\mathbf{2}$ also contains three pieces of stereochemical information: a double bond geometry, a chiral centre at C(3), and a chiral centre at $\mathrm{C}\left(2^{\prime}\right)$. This gives rise to six possible types of stereocontrol: ${ }^{3}$ control of the product double bond geometry; $\mathrm{C}(1)$ to $\mathrm{C}(3)$ chiral transfer; S to $\mathrm{C}\left(2^{\prime}\right)$ chiral transfer; S to $C(3)$ chiral transfer; diastereoselectivity at $C(3)$ in relation to chiral centres present elsewhere in the molecule; and $\mathrm{C}\left(2^{\prime}\right) / \mathrm{C}(3)$ diastereoselectivity. Let us consider these types of stereocontrol in order beginning with control of the double bond geometry.
When an open chain sulfonium ylide rearranges to give a disubstituted or trisubstituted ($\mathrm{R}^{8}=\mathrm{H}$) double bond the E double bond geometry predominates. ${ }^{4}$ The selectivity is particularly high when R^{1} and/or R^{4} are large on account of high allylic 1,3 strain. ${ }^{5}$ On the other hand, in ring expansions/ contractions the product double-bond geometry is dictated largely by product ring size. ${ }^{6}$
Many [2,3] sigmatropic rearrangements have been shown to be stereospecifically suprafacial and so to give quantitative $\mathrm{C}(1)$ to $\mathrm{C}(3)$ chiral transfer for a given product double-bond geometry. ${ }^{7,8}$ 1,3 Chiral transfer in the sulfonium ylide rearrangement has been demonstrated in ring contractions, ${ }^{9}$ and for migration over the surface of a ring, ${ }^{10}$ but there has been only one example of 1,3 chiral transfer in a truly open chain compound. ${ }^{11}$ Moreover, although in all these examples the rearrangement proceeded suprafacially, there has been no proof prior to the work that we now report that the course of the reaction is stereospecific rather than stereoselective. ${ }^{1}$ Chiral transfer from S to $\mathrm{C}\left(2^{\prime}\right)$ and from S to $\mathrm{C}(3)$ has been demonstrated in systems where there is no chiral centre at $\mathrm{C}(1) .{ }^{12}$ An interesting development in this area is chiral

Scheme 1
induction at $\mathrm{C}(3)$ using a chiral auxiliary attached to an achiral sulfur. ${ }^{13}$
High $\mathrm{C}\left(2^{\prime}\right) / \mathrm{C}(3)$ diastereoselectivities have been observed in some ring contractions and ring expansions, ${ }^{14}$ but the ring plays an important role in diastereoselectivity in these constrained systems. Prior to our work, ${ }^{1}$ there was only one example of good diastereoselectivity in the rearrangement of an open chain sulfonium ylide. ${ }^{11}$ In cases where there is no chiral centre at $\mathrm{C}(1)$ the diastereoselectivity has been very poor. ${ }^{15} \mathrm{We}$ hoped to induce good $\mathrm{C}\left(2^{\prime}\right) / \mathrm{C}(3)$ diastereoselectivity in open chain compounds using our low temperature conditions for the $[2,3]$ sigmatropic rearrangement ${ }^{2}$ and made no attempt to control the chirality at sulfur.
We have developed a method for the stereocontrolled synthesis of diols with 1,4 related chiral centres across an E double bond using the $[2,3]$ sigmatropic rearrangement of allylic sulfoxides. ${ }^{7}$ We hoped to build on this work and to develop a similar method to make E-homoallylic sulfides 3 with $1,4,5$ related chiral centres by the [2,3] sigmatropic rearrangement of sulfonium ylides 4 derived from allylic sulfides 5 (see the retrosynthetic analysis, Scheme 2). Previously, we have shown that the precursor allylic sulfides 5 can be synthesised stereospecifically from aldols 6 by $1,2 \mathrm{PhS}$ migration $\left(\mathrm{R}^{1}=\mathrm{Ph}\right) .{ }^{16}$ By investigating the [2,3] sigmatropic rearrangement of sulfonium ylides derived from syn allylic sulfide 7 and anti allylic sulfide 8 (Fig. 1), we hoped to prove the stereospecificity of $\mathrm{C}(1)$ to $\mathrm{C}(3)$ chiral transfer and to find out whether good and predictable $\mathrm{C}\left(2^{\prime}\right) / \mathrm{C}(3)$ diastereoselectivities could be obtained in open chain compounds. The cyclohexenyl ring that connects $\mathrm{C}(2)$ and $\mathrm{C}(3)$ should not add an extra constraint to the system since the relationship between the substituents on these atoms is already fixed by the double bond and the transition state for $[2,3]$ sigmatropic rearrangement is believed to be early. ${ }^{17}$ To confirm that this ring does not affect the stereochemical outcome of the rearrangement we intended

Scheme 2

8

UV marker
and weight

$R^{1}=$ 4-Methoxyphenyl
Fig. 1
to synthesise syn allylic sulfide 9 which has no ring (Fig. 1). The phenyl group in the allylic sulfide 9 was chosen to give the compound low volatility and as a UV marker. It is separated from the double bond by a spacer to avoid conjugation. The 4methoxyphenylsulfanyl group was chosen as its sulfur atom is more nucleophilic than that of the phenylsulfanyl group and it has been shown to be more effective in the sulfonium salt forming reaction that precedes ylide formation and rearrangement; ${ }^{2}$ its aromatic signals in the ${ }^{1} \mathrm{H}$ NMR spectra are distinctive, it has a strong UV absorption and we wished to see whether it affected the 1,2 arylsulfanyl migration. The syn allylic sulfide $\mathbf{1 0}$ bearing a phenylsulfanyl group was to be used for comparison.

Results and discussion

Synthesis of the allylic sulfides

Allylic sulfides 7 and 8 could be made from α-arylsulfanyl aldehyde 11 (Scheme $3, \mathrm{R}^{1}=4$-methoxyphenyl). To make this aldehyde, 4-methoxybenzenethiol was alkylated with bromochloromethane to give chloromethyl sulfide 12 and the chloride displaced by methoxide to give methoxy methyl sulfide 13. Deprotonation of the latter with butyllithium at $-30^{\circ} \mathrm{C}$ and reaction with cyclohexanone gave alcohol 14 in moderate yield. The temperature of deprotonation is critical to the success of this reaction. Finally, rearrangement ${ }^{18}$ of the alcohol $\mathbf{1 4}$ gave the aldehyde 11.

Since we wished to make both syn allylic sulfide 7 and anti

Scheme 3 Reagents and conditions: i, (a) NaH, THF, RT, 1 h , (b) $\mathrm{CH}_{2} \mathrm{BrCl}, 2$ h 30 min ; ii, $\mathrm{NaOMe} \mathrm{MeOH}, 2$ h $10 \mathrm{~min}, \mathrm{RT}$; iii, (a) BuLi, THF $,-30^{\circ} \mathrm{C}, 32 \mathrm{~min}$, (b) cyclohexanone, 30 min ; iv, $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h} 25 \mathrm{~min} ; \mathrm{v}, \mathrm{MeCH}=\mathrm{C}(\mathrm{OLi}) \mathrm{OMe}, \mathrm{THF},-78$ to $-45^{\circ} \mathrm{C}, 4 \mathrm{~h}$

18
Fig. 2

Table 1 Difference NOE experiments on syn lactone 18

		NOE enhancement ${ }^{a}$			
Nucleus irradiated (ppm)	Multiplicity	1-H	2-H	3-H	4-Me
2-H (3.63)	doublet double quartet doublet	s	-	s	$*$
3-H (3.01)	m	s	-	s	
4-Me (1.41)					

* $=$ no NOE. ${ }^{a} \mathrm{~s}=$ strong $\mathrm{NOE}, \mathrm{m}=$ medium $\mathrm{NOE}, \mathrm{w}=$ weak NOE.
allylic sulfide 8 we carried out an unselective aldol condensation on α-arylsulfanyl aldehyde 11 to give anti aldol 15 and the syn aldol 16 (Scheme 3); the latter could be separated by chromatography and their stereochemistry assigned by the shift of the methyl signal MeCH in the ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\delta_{M e \mathrm{CH}} 18.0\right.$ for anti aldol 15 and 14.3 ppm for syn aldol 16). ${ }^{19}$

An interesting alternative to our usual synthesis ${ }^{16}$ of allylic sulfides is lactonisation followed by reduction to the 1,3 diol, monoprotection and sulfur-assisted dehydration. The anti aldol 15 cyclised stereospecifically to the anti lactone 17 when heated under reflux in dichloromethane with catalytic acid (Scheme 4), but when the syn aldol 16 was subjected to similar conditions a mixture of syn lactone 18 and anti allylic sulfide 19 was obtained. The formation of the syn lactone $\mathbf{1 8}$ is slow due to steric interaction between the methyl and the 4-methoxyphenylsulfanyl groups in the transition state and so dehydration competes. Such competition can also take place in the cyclisation of anti aldols when the ester group is large. ${ }^{16,20}$ The effect of the product 3,4 stereochemistry parallels that observed in tetrahydrofuran formation. ${ }^{21}$ The stereochemistry of syn lactone 18 was proven by NOE (Fig. 2, Table 1) thus confirming the assignment of the aldols $\mathbf{1 5}$ and $\mathbf{1 6}$.

Reduction of anti lactone $\mathbf{1 7}$ to the syn diol $\mathbf{2 0}$ with lithium aluminium hydride was slow and the hemiacetal intermediate 21 (1:1 mixture of anomers) could be isolated (Scheme 4). However, the syn lactone 18 was reduced rapidly with lithium aluminium hydride at $0^{\circ} \mathrm{C}$ to give the anti 1,4 diol 22 . This illustrates the greater stability of the 3,4 anti configuration relative to the $3,4 \mathrm{syn}$ configuration in the cyclic hemiacetals. Monomethylation ${ }^{22}$ of each of the diols 20 and 22 proceeded smoothly to give the corresponding alcohols 23 and 24. The syn

15

17
Via
iii 90%

vii $\mid ~ 81 \%$

ii

18 36\%
iv $\mid 82 \%$

8

Scheme 4 Reagents and conditions: i, $\mathrm{TsOH}\left(0.2\right.$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 9 h 30 min ; ii, TsOH (0.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 4 h 30 min ; iii, LiAlH (1.4 equiv.), THF, 3 h 30 min , RT; iv, LiAlH_{4} (1.4 equiv.), THF, $1 \mathrm{~h}, 0{ }^{\circ} \mathrm{C}$; v, (a) $50 \% \mathrm{NaOH}_{\text {(aq.) }}$ (1.3 equiv.), $\mathrm{Bu}_{4} \mathrm{NI}$ (1.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $50 \mathrm{~min}, \mathrm{RT}$, (b) (MeO$)_{2} \mathrm{SO}_{2}$ (1.5 equiv.), $0^{\circ} \mathrm{C}$ then $\mathrm{RT}, 24 \mathrm{~h}$; vi, (a) $50 \% \mathrm{NaOH}_{\text {(aq.) }}$ (2.6 equiv.), $\mathrm{Bu}_{4} \mathrm{NI}$ (1.9 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}$, RT , (b) (MeO) $\mathbf{2 O}_{2}$ (3 equiv .), $0^{\circ} \mathrm{C}$ then $\mathrm{RT}, 21 \mathrm{~h}$; vii, TsOH (0.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 12 min ; viii, TsOH (0.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 1 h 50 min ; ix, LiAlH (1.0 equiv.), $0{ }^{\circ} \mathrm{C}$ to $\mathrm{RT}, \mathrm{Et}_{2} \mathrm{O}, 6 \mathrm{~h}$

i

ii 76%

Scheme 5 Reagents and conditions: i, (a) NaH (1.15 equiv.), THF, RT, 30 min , (b) $\mathrm{Bu}_{4} \mathrm{NI}$ (0.01 equiv.), BnBr (1.05 equiv.), 1 h 50 min ; ii, TsOH (0.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 6 min
alcohol $\mathbf{2 3}$ was rapidly dehydrated under acid catalysis to give syn allylic sulfide 7. The dehydration of the anti alcohol 24 required a very much longer time at reflux in dichloromethane to give the anti allylic sulfide 8. It seems that the dehydration of the syn alcohol 23 is sulfur-assisted but that of the anti alcohol 24 is not.
The allylic sulfide 19 could be reduced to alcohol 25, but methylation under the same conditions as above failed. Since a sulfonium ylide could be generated from allylic sulfide 19, reduction and protection was not pursued further.
The lactonisation, reduction, monoprotection and dehydration route is effective in the case of the anti aldol $\mathbf{1 5}$ and has the advantage that the monoprotection is of a primary alcohol in

DMP = 2,6-Dimethylphenyl
Scheme 6 Reagents and conditions: i, $\mathrm{MeCH}=\mathrm{C}(\mathrm{OLi}) \mathrm{ODMP}, \mathrm{THF}$ -78 to $-45^{\circ} \mathrm{C}, 13 \mathrm{~min}$; ii, $\mathrm{LiAlH}_{4}, \mathrm{THF}, \mathrm{RT}, 1 \mathrm{~h} 45 \mathrm{~min}$; iii, (a) $50 \% \mathrm{NaOH}_{\text {(aq.) }}$ (1.3 equiv.), $\mathrm{Bu}_{4} \mathrm{NI}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 35 \mathrm{~min}$, (b) (MeO$)_{2-}$ SO_{2} (1.5 equiv.), $0{ }^{\circ} \mathrm{C}$ then RT, 24 h ; iv, TsOH (cat.), PhH , reflux, 5 min
the presence of a tertiary alcohol rather than in the presence of a secondary alcohol as is the case in our traditional route. This is worth noting as benzylation ${ }^{23}$ of the known ${ }^{16}$ anti diol 26 was not completely regioselective giving both the secondary alcohol 27 and the primary alcohol 28 (Scheme 5). The monobenzylated alcohol 27 was converted into the allylic sulfide $\mathbf{1 0}$ using acid catalysis.

We also made syn allylic sulfide 7 in a stereoselective manner using Heathcock's anti selective aldol reaction (Scheme 6). ${ }^{24}$ Reaction of the lithium enolate of 2,6-dimethylphenyl propionate with α-arylsulfanyl aldehyde 11 proceeded with 90 : 10 diastereoselectivity but the aldol product 29 decomposed on silica and could only be isolated in 30% yield. Following our usual approach, ${ }^{7,16}$ the crude aldol 29 was reduced and the purified anti diol 30 (47% from the aldehyde) was

Scheme 7 Reagents and conditions: i, (a) LDA (1 equiv.), hexane ether ($3: 4$), $0^{\circ} \mathrm{C}, 1 \mathrm{~h} 35 \mathrm{~min}$, (b) $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ (1 equiv.), $0^{\circ} \mathrm{C}$ to RT , then 65 h , (c) $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}_{\text {(aq.) }}$ (6 equiv.), reflux, 2 h ; ii, TMSCl (1.2 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (2.4 equiv.), DMF, $80^{\circ} \mathrm{C}, 22 \mathrm{~h}$; iii, $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ (1 equiv), THF, RT , 1 h 20 min ; iv, $\mathrm{R}^{1} \mathrm{SCl}$ (1 equiv.), THF/ $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to $\mathrm{RT}, 4 \mathrm{~h} ; \mathrm{v}, E-\mathrm{MeCH}=\mathrm{C}(\mathrm{OLi}) \mathrm{ODMP}, \mathrm{THF},-78^{\circ} \mathrm{C}, 11 \mathrm{~min}$
monomethylated ${ }^{22}$ on the primary hydroxyl to give alcohol 31 . 1,2 Aryl sulfanyl migration then gave syn allylic sulfide 7.
Allylic sulfide 9 was synthesised from aldehyde 32 (Scheme 7). Alkylation of the metallated enamine derived from imine 33 gave aldehyde 34. Silyl enol ether $35(E: Z, 63: 37)$ was prepared from aldehyde 34, and added to a solution of the sulfenyl chloride 36 (formed by the action of sulfuryl chloride on disulfide 37) to give aldehyde 32.
Heathcock's anti selective aldol condensation ${ }^{24}$ on the aldehyde gave a mixture of aldols in 90% yield. The 2,3 selectivity of 86 : 14 anti-syn is comparable to that observed for other aldols. ${ }^{7,16}$ Since the steric effects of the methyl group and methylene chain are similar there was only a moderate preference ($73: 27$) for the anti,anti aldol 38 over the anti,syn aldol 39 (Scheme 7). This is consistent with Roush's analysis of 3,4 stereoselectivity. ${ }^{25}$ The ratio of 3,4 diastereoisomers of the 2,3 syn aldols 40 was $67: 33$, but they were not assigned. Chromatography gave anti,anti aldol 38 as a pure crystalline solid in 30% yield. Assignment of the 2,3 anti stereochemistry to each of the aldols $\mathbf{3 8}$ and 39 was made using the chemical shift of the methyl signal MeCH in the ${ }^{13} \mathrm{C}$ NMR ($\delta_{\mathrm{MeCH}} 18.7$ for both aldols 38 and 39 ; in each case, the signal for the two methyls attached to the phenyl ring was in the region $16.7-16.8 \mathrm{ppm}$).
Lithium aluminium hydride reduction of ester 38 gave diol 41 in 65% yield. A similar yield of a mixture of the diols 41 and 42 was obtained from the reduction of a mixture of the 2,3 anti aldols 38 and 39. Acid-catalysed cyclisation ${ }^{16,21}$ of the pure anti,anti diol 41 gave anti, anti tetrahydrofuran 43 in 93% yield (Scheme 8). The stereochemistry was confirmed by NOE (Fig. 3, Table 2). Cyclisation of a $57: 43$ mixture of 2,3 anti aldols 38 and 39 gave a $53: 47$ mixture of tetrahydrofurans 43 and 44 in 44% yield. Assignment of the anti,syn stereochemistry to tetrahydrofuran 44 was made by comparison of the coupling constant J_{AB} between $\mathrm{C} H^{\mathrm{A}} \mathrm{S}$ and $\mathrm{C} H^{\mathrm{B}} \mathrm{Me}$ of 10.7 Hz with the coupling constant J_{AB} of anti,anti tetrahydrofuran 43 and other similar tetrahydrofurans of known stereochemistry. The 3,4 anti tetrahydrofurans have a coupling constant J_{AB} in the range $10.4-10.9 \mathrm{~Hz}$, while $3,4 \operatorname{syn}$ tetrahydrofurans have a coupling constant J_{AB} in the range $7.6-8.9 \mathrm{~Hz} .{ }^{16,26,27}$ Assignment of the stereochemistry of tetrahydrofurans 43 and 44 confirmed assignment of aldols $\mathbf{3 8}, 39$ and 40.

ii 44%

44
$\mathrm{R}^{1}=4$-Methoxyphenyl

Scheme 8 Reagents and conditions: i, TsOH (0.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 1 h ; ii, TsOH (0.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 24 min

43
Fig. 3
Monomethylation ${ }^{22}$ of a mixture of diols 41 and 42 gave a similar mixture of anti,anti alcohol 45 and anti,syn alcohol 46 (Scheme 9). This mixture was heated under reflux in benzene with catalytic acid for 9 min to give a $(77: 15: 8)$ mixture of E endo allylic sulfide $9, Z$-endo allylic sulfide 47 and exo allylic sulfide 48. No carbocyclisation of the phenyl ring onto the episulfonium ion was observed. ${ }^{27}$ The same reaction when carried out on a mixture of slightly different composition (a ratio of anti,anti to anti,syn of $82: 18$) in dichloromethane with a much longer reflux time (1 h) gave the allylic sulfides in a similar ratio to that above ($9: 47: 48,81.5: 13.5: 5$) but less

Table 2 Difference NOE experiments on anti,anti tetrahydrofuran 43

Nucleus irradiated (ppm)	Multiplicity	NOE enhancement ${ }^{a}$						
		1-H	2-H	3-H	4- H^{4}	5-H	6-Me	7-Me
1-H (7.39)	doublet	-	*	*	w	*	w	w
2-H (3.96)	triplet	*	-	s	*	m	*	*
3-H (3.27)	triplet	*	s	-	w	*	*	w
4-H (2.74)	doublet	m	*	*	--	*	*	w
5-H (2.28)	multiplet	*	m	*	*	--	m	m
6-Me (1.21)	singlet	m	*	*	w	m	\cdots	*
$7-\mathrm{Me}$ (1.09)	doublet	*	*	m	m	w	*	--

[^0]

Scheme 9 Reagents and conditions: i, (a) $50 \% \mathrm{NaOH}_{\text {(aq.) }}$ (1.3 equiv.), $\mathrm{Bu}_{4} \mathrm{NI}$ (1.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}$, RT , (b) (MeO) SO_{2} (1.5 equiv.), $0{ }^{\circ} \mathrm{C}$ then RT , 21 h ; ii, TsOH (0.2 equiv.), benzene, heat to reflux (9 min), and reflux 2 min
cleanly with impurities including 17\% 4-methoxybenzenethiol. Purification of the latter mixture by chromatography gave the E-endo allylic sulfide 9 and the exo allylic sulfide 48 as a ($93: 7$) mixture in 56% yield.

[2,3] Sigmatropic rearrangements

Sulfonium salts were prepared at low temperature from allylic sulfides 7, 8, 9, 10 and 19 (Scheme 10). ${ }^{1,2}$ The salts were not isolated but were treated with 1,8-diazabicyclo[5.4.0] undec-7ene (DBU) to give the sulfonium ylides $\mathbf{4 9}, \mathbf{5 0}, 51,52$ and $\mathbf{5 3}$, respectively. These rearranged spontaneously to give the homoallylic sulfides $\mathbf{5 4}, 55,56,57$ and 58 , respectively (isolated yields after purification are given in Scheme 10). The only significant impurities in the crude products before they were purified by chromatography (ratio given in Scheme 10) were the epimers at the carbon attached to sulfur 59, 60, 61, 62 and 63 (Scheme 11 and Fig. 4). Other impurities (with olefinic signals in the ${ }^{1} \mathrm{H}$ NMR spectra of the crude products) were present in only trace quantities. An exception was the rearrangement of sulfonium ylide 51 which gave an impurity, tentatively assigned to the rearrangement product of exo allylic sulfide 48, as up to 9% of the homoallylic sulfide products. Purification by chromatography gave each of the homoallylic sulfides 54-58 in $>89 \%$ purity and in the yields shown (Scheme 10). Purities are based on the assumption that any olefinic signals in the ${ }^{1} \mathrm{H}$ NMR spectra belonged to compounds with molecular masses equal to that of the homoallylic sulfides.

Control over the relative stereochemistry of the 1,4 related chiral centres was complete (numbering as indicated in Scheme 10): the $1,2 \mathrm{syn}$ allylic sulfide 7 gave the $1,4 \mathrm{syn}$ homoallylic sulfide 54, while the 1,2 anti allylic sulfide $\mathbf{8}$ gave the 1,4 anti homoallylic sulfide 55 . In neither case was any trace of an E homoallylic sulfide with the opposite 1,4 stereochemistry detected in the crude mixture. This is the first proof that $\mathrm{C}(1)$ to $\mathrm{C}(3)$ (numbering as in Scheme 1) chiral transfer is stereospecifically suprafacial for this rearrangement. The cyclohexenyl ring cannot play a major role in controlling the
rearrangement as sulfonium ylide 51, which lacks this ring, gave homoallylic sulfides 56 and 61 with no 1,4 anti isomers detectable in the crude mixture.
The selectivity for the E-double bond is well precedented but we also found a remarkable degree of control over the 4,5 stereochemistry (numbering as in Scheme 10). The ${ }^{1} \mathrm{H}$ NMR of the crude mixtures showed $>90: 10$ diastereoselectivity in favour of the 4,5 anti compounds $\mathbf{5 4}, \mathbf{5 5}, 57$ and $\mathbf{5 8}$. The cyclohexenyl ring of the sulfonium ylides 49, 50, $\mathbf{5 2}$ and $\mathbf{5 3}$ should not introduce an additional constraint to rotation about the bonds of the 5 -membered ring transition state (Scheme 1) since $C(2)$ and $C(3)$ are already linked by a double bond and the transition state is believed to be early. ${ }^{17}$ This was confirmed by the almost equally good diastereoselectivities observed in the formation of homoallylic sulfide 56. Equilibration experiments (Scheme 11) show that there is little difference in the thermodynamic stability of the 4,5-syn and 4,5-anti isomers and therefore the preference for the 4,5 anti stereochemistry must be kinetic. Interconversion of the homoallylic sulfides under basic conditions was slow at room temperature: 1,4 syn, 4,5 anti homoallylic sulfide 54 (95% pure) when stirred with sodium ethoxide (3.5 equiv.) gave little change in compound composition after 2 h .
The nature of the $\mathrm{C}\left(2^{\prime}\right) / \mathrm{C}(3)$ diastereoselectivity (i.e. the 4,5 anti selectivity) can be explained using the folded envelope transition state proposed by Wu and Houk (Fig. 5). ${ }^{17}$ Of the two possible envelope conformations $\mathbf{6 4}$ and 65 , the eclipsed substituent (R^{1} and $\mathrm{CO}_{2} \mathrm{Et}$) orientation across the developing $\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(3)$ bond disfavours 65 . Weinreb and co-workers observed the same type of diastereoselectivity in the rearrangement of a sulfonium ylide with a Z-double bond. ${ }^{11}$
The configuration at S is unknown and is not required to explain the configuration at $C(3)$, which is set up by chiral transfer from $\mathrm{C}(1)$. It may be unimportant or it may invert. It is considered unimportant in our explanation of the $\mathrm{C}\left(2^{\prime}\right) / \mathrm{C}(3)$ diastereoselectivity given above. If the configuration at S were stable and important in the $\mathrm{C}\left(2^{\prime}\right) / \mathrm{C}(3)$ diastereoselectivity, then

Scheme 10 Reagents and conditions: i, (a) $\mathrm{N}_{2} \mathrm{CHCO}_{2} \mathrm{Et}$ (1.6 equiv.), HBF_{4} (1.6 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},<-72^{\circ} \mathrm{C}, 11 \mathrm{~min}$, (b) DBU (2.7 equiv.), 20 min , (c) AcOH (3 equiv.); ii, (a) $\mathrm{N}_{2} \mathrm{CHCO}_{2} \mathrm{Et}$ (1.6 equiv.), HBF_{4} (1.6 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-55^{\circ} \mathrm{C}, 10 \mathrm{~min}$, (b) DBU (2.7 equiv.), -50 to $-35^{\circ} \mathrm{C}, 16 \mathrm{~min}$, (c) $\mathrm{HCl}_{\text {(aq.) }}$; iii, (a) $\mathrm{N}_{2} \mathrm{CHCO}{ }_{2} \mathrm{Et}\left(1.6\right.$ equiv.), HBF_{4} (1.6 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-54^{\circ} \mathrm{C}, 15 \mathrm{~min}$, (b) DBU (2.7 equiv.), -52 to $-29^{\circ} \mathrm{C}, 22 \mathrm{~min}$, (c) $\mathrm{HCl}_{\text {(aq.) }}$; iv, (a) $\mathrm{N}_{2} \mathrm{CHCO}_{2} \mathrm{Et}\left(1.6\right.$ equiv.), HBF_{4} (1.6 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},<-72^{\circ} \mathrm{C}, 15 \mathrm{~min}$, (b) DBU (2.7 equiv.), -78 to $-35^{\circ} \mathrm{C}, 45 \mathrm{~min}$, (c) $\mathrm{HCl}_{\text {(aq.) }}$, v , (a) $\mathrm{N}_{2} \mathrm{CHCO}_{2} \mathrm{Et}$ (1.6 equiv.), HBF_{4} (1.6 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},<-72{ }^{\circ} \mathrm{C}, 11 \mathrm{~min}$, (b) DBU (2.7 equiv.), 30 min , (c) AcOH (4.4 equiv.)

62

63

Fig. 4
it would have to be determined by the configuration of the chiral centre at $\mathrm{C}(1)$. Under these circumstances one of the conformers 66 or 67 of the allylic sulfide must be alkylated preferentially in our system and the other conformer must be alkylated selectively in the system investigated by Weinreb and co-workers (Fig. 6). ${ }^{11}$ This possibility cannot be excluded as in our previous work ${ }^{2}$ we found that when the alkylation and rearrangement was carried out on allylic sulfides lacking a chiral centre at $\mathbf{C}(1)$ there was little diastereoselectivity, albeit at higher temperature.
Our low-temperature conditions for the generation of sulfonium salts and ylides allow formation of thermally unstable sulfonium salts, avoid side reactions, and give rise to good and predictable $\mathrm{C}\left(2^{\prime}\right) / \mathrm{C}(3)$ selectivities. The conditions do not affect ester groups or the stereochemical integrity of epimerisable centres (see reaction of allylic sulfide 19). The
phenylsulfanyl group which we previously showed to be less nucleophilic than the 4 -methoxyphenylsulfanyl group ${ }^{2}$ is sufficiently nucleophilic under the optimised conditions to give good yields of homoallylic sulfide from allylic sulfide.

Assignment of stereochemistry and further reactions

The rearrangement of the sulfonium ylides derived from syn allylic sulfide 5 and anti allylic sulfide 6 showed that the rearrangement is stereospecifically suprafacial (suprafacial from precedent) so that once the stereochemistry of the double bond is determined the 1,4 stereochemistry can be assigned. The epimerisation experiments demonstrated that the pairs of homoallylic sulfides 54 and 59, 55 and 60 and 56 and $\mathbf{6 1}$, differ only in their 4,5 stereochemistry. The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, APT, IR and MS data of all the major products were obtained. The minor product 61 was also isolated but the ${ }^{1} \mathrm{H}$ NMR data for the homoallylic sulfides $\mathbf{5 9}$ and $\mathbf{6 0}$ were derived from the spectra of the equilibrated mixtures.
The 4,5 stereochemistry and the double bond geometry were assigned from the spectral data of homoallylic sulfides 54, 55, 57 and 58 , which bear a cyclohexyl ring. The COSY spectrum of the anti,anti homoallylic sulfide $\mathbf{5 5}$ allowed the assignment of this compound's one-dimensional ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 7, Table 3). By comparison with this, the ${ }^{1} \mathrm{H}$ NMR spectra of

54

Equilibrated ratio $54: 59=36: 64$

Equilibrated ratio 55:60 $=34: 66$

$\mathrm{R}^{1}=$ 4-methoxyphenyl, $\mathrm{R}^{2}=\mathrm{PhCH}_{2} \mathrm{CH}_{2}$
Scheme 11 Reagents and conditions: i, NaOEt (4.4 equiv.), EtOH, RT, 3 d ; ii, NaOEt (3.3 equiv.), EtOH, RT, 3 d; iii, NaOEt (4.5 equiv.), EtOH, RT, 3 d

Fig. 5

66

67

Fig. 6

55
Fig. 7
homoallylic sulfides $\mathbf{5 4}, \mathbf{5 7}, \mathbf{5 8}, 59$ and $\mathbf{6 0}$ could also be assigned using the great similarity in the shape and chemical shift of the signals.

The conformation of the anti,anti homoallylic sulfide 55 is shown in Fig. 7. Hydrogen atom 11 shows no diaxial coupling and so is assigned equatorial. The same applies to all the homoallylic sulfides which bear a cyclohexyl ring. Clearly; the 1,3

54
Fig. 8

58
Fig. 9
diaxial interactions of hydrogen atoms 15 and 13 with the bulky secondary sulfide group are less unfavourable than the 1,3 allylic strain that would occur between hydrogen atom 3 and the same group if it were equatorial. ${ }^{5}$ Axial hydrogen 13 shows a long-range coupling to hydrogen 3 , which confirms its assignment.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of homoallylic sulfide 55 the vicinal coupling constant $J_{5,11}$ is 11.6 Hz . This indicates that these hydrogen atoms are at approximately 180° to each other in the preferred conformation as illustrated in Fig. 7. This conformation has the large 4-methoxyphenylsulfanyl group orientated away from hydrogen atoms 15 and 13 so minimising 1,3 diaxial interactions. Similarly, in the ${ }^{1} \mathrm{H}$ NMR spectra of compounds 54, 57 and 58 this coupling constant lies in the range of $11.6-11.8 \mathrm{~Hz}$. Unfortunately, the CHS signals in the ${ }^{1} \mathrm{H}$ NMR spectra of homoallylic sulfides 59 and 60 were obscured by other signals, so the coupling constants were not obtained.
The major products of $[2,3]$ sigmatropic rearrangement, homoallylic sulfides 54 and 55 , have almost identical ${ }^{1} \mathrm{H}$ NMR spectra; they differ only in the signals that correspond to hydrogens 8 and 9 in each case. This indicates that they have the same double-bond geometry and the same 4,5 stereochemistry. The epimerisation products, homoallylic sulfides 59 and 60, also have ${ }^{1} \mathrm{H}$ NMR spectra similar to each other but markedly different from those of sulfides 54 and 55 , particularly in the chemical shift of the olefinic proton.
NOE experiments were carried out on syn,anti allylic sulfide 54 (Fig. 8, Table 4). Irradiation of olefinic hydrogen atom 3 (Fig. 8) of homoallylic sulfide 54 gave rise to an NOE enhancement of the equatorial hydrogen atom 11 , which proves that the double bond geometry is E. This is further confirmed by the observation that equatorial hydrogen atom 12 shows an NOE enhancement when the allylic hydrogen atom 10 is irradiated. The 4,5 stereochemistry could not be assigned from these data.

NOE experiments on homoallylic sulfide 58 (Fig. 9, Table 5) proved that the double bond geometry of this compound is also E : NOE enhancements were detected between equatorial hydrogen atom 11 and olefinic hydrogen atom 3, and between equatorial hydrogen atom 12 and hydrogen atom 10 . NOE

Table 3 COSY assignment of the $1 \mathrm{D}{ }^{1} \mathrm{H}$ NMR of anti,anti homoallylic sulfide 55

Assignment	Multiplicity	$\delta(\mathrm{ppm})$	Assignment	Multiplicity	$\delta(\mathrm{ppm})$
1	d	7.39	10	septet	2.74
2	d	6.81	11	brd	2.59
3	d	5.12	12	dt	2.40
4	AB dq	4.00	13	dt	1.89
5	d	3.93	14	m	1.6
6	s	3.78	m	1.3	
7	s	3.33	17	t	1.08
8	dd	3.31	18	1.01	

Table 4 Difference NOE experiments on syn,anti homoallylic sulfide 54

Nucleus irradiated (ppm)	Multiplicity	Nuclear Overhauser enhancements ${ }^{\text {a }}$											
		1-H	2-H	3-H	4-H	5-H	10-H	11-H	12-H	13-H	6-Me	17-Me	18-Me
1-H (7.37)	d	-	s	*	*	w	*	*	*	*	-ve	*	*
3-H (5.11)	d	*	*	-	*	*	*	m	*	*	*	*	*
4-H (3.98)	q	*	*	*	-	*	*	*	*	*	*	m	*
5-H (3.94)	d	m	*	w	*	-	*	*	*	w	*	*	*
10-H (2.74)	dsextet	*	*	*	*	*	-	*	m	*	*	*	m

* $=$ no NOE. ${ }^{a} \mathrm{~s}=$ strong NOE, $\mathrm{m}=$ medium NOE, $\mathrm{w}=$ weak NOE.

Table 5 Difference NOE experiments on anti,anti homoallylic sulfide 58

Nucleus irradiated (ppm)	Multiplicity	NOE enhancement ${ }^{a}$									
		1-H	3-H	4-H	5-H	10-H	11-H	12-H	13-H	17-Me	18-Me
3-H (5.36)	d	w	-	*	m	*	s	*	*	*	m
4-H (3.99)	q	w	*	-	*	*	*	*	*	s	*
$5-\mathrm{H}$ (3.89)	d	m	w	*	-	*	*	*	w	*	*
10-H (3.43)	dq	*	m	*	*	-	*	m	*	*	s
11-H (2.61)	br d	*	s	*	*	*	-	*	*	*	*
12-H (2.37)	dt	*	*	*	*	m	*	-	s	*	*
13-H (1.93)	td	*	*	*	s	*	*	S	-	*	*

* $=$ no NOE. ${ }^{a} \mathrm{~s}=$ strong NOE, $\mathrm{m}=$ medium NOE, $\mathrm{w}=$ weak NOE.

Scheme 12 Reagents and conditions: i, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O},-7$ to $8^{\circ} \mathrm{C}, 4 \mathrm{~h}$, then RT , 5 h 30 min ; ii, $\mathrm{R}^{2} \mathrm{COCl}$ (1.4 equiv.), DMAP (1.4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 15 min ; iii, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 1 \mathrm{~h} 50 \mathrm{~min}, \mathrm{RT}$, iv, (a) $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ (3.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 1 \mathrm{~h} 25 \mathrm{~min}$, (b) $\mathrm{NaOH}_{\text {(aq.) }}$ (57 equiv.), 3 h
enhancements were also detected between hydrogen atom 5 and axial hydrogen atom 13, and between hydrogen atom 5 and olefinic hydrogen atom 3, but no NOE was observed between 5 and any of the other ring hydrogens. Together with the large vicinal coupling constant between hydrogen atoms 5 and 11, this confirms that the hydrogen atom 5 lies as illustrated in Fig 9. Therefore, the NOE enhancement from olefinic hydrogen atom 3 to the hydrogen 1 of the aryl ring proves the 4,5 stereochemistry is anti. Assignment of the 4,5 stereochemistry in other compounds is on the assumption that the stereoselectivity is in the same direction.

The epimerisation experiments (Scheme 11) showed that homoallylic sulfides 56 and 61 differ only in their 4,5 stereochemistry. The stereochemical assignment of these compounds was based on the demonstrated suprafacial
stereospecificity and from the above precedent for 4,5 anti stereochemistry.

In summary, complete assignment of $1,4,5$ stereochemistry and the double bond geometry has been possible using ${ }^{1} \mathrm{H}$ NMR techniques together with epimerisation experiments and the knowledge that $\mathrm{C}(1)$ to $\mathrm{C}(3)$ chiral transfer is stereospecific.

The synthetic possibilities of the homoallylic sulfides were briefly explored (Scheme 12). Reduction of ester 54 to the alcohol 66 and esterification gave a crystalline derivative 67. Reduction of ester 56 gave alcohol 68 which could be converted into the epoxide 69 by using the conditions of Sharpless and coworkers. ${ }^{28}$

In conclusion, the [2,3] sigmatropic rearrangement of sulfonium ylides allows stereocontrolled synthesis of homoallylic sulfides with 1,4,5 related chiral centres across an E
double bond in good yield. The 1,4 relationship is formed stereospecifically from the 1,2 related chiral centres originally introduced by an aldol condensation; $\mathrm{C}(1)$ to $\mathrm{C}(3)$ chiral transfer (transition state numbering as in Scheme 1) in this [2,3] sigmatropic rearrangement has been proven to be stereospecifically suprafacial for the first time. The reaction is also highly selective for the 4,5 anti stereochemistry when carried out using our low-temperature conditions.

Experimental

When the ${ }^{13} \mathrm{C}$ NMR spectrum was obtained on the 400 MHz machine, attached proton tests (APT) were carried out. In the APT, a positive deflection of the signal indicates that the carbon atom is attached to one or three hydrogen atoms and this is indicated by an ' a ' (above) after the ${ }^{13} \mathrm{C}$ NMR frequency in ppm . A negative deflection of the signal indicates that the carbon atom is attached to none or two hydrogen atoms and this is indicated by a ' b ' (below) after the ${ }^{13} \mathrm{C}$ NMR frequency in ppm. When the ${ }^{13} \mathrm{C}$ NMR spectrum was obtained on the 300 MHz machine, DEPT was used instead of APT; the result is the same except that carbon atoms with no hydrogens attached do not appear in the spectrum. An asterisk after the frequency of a signal in the ${ }^{1} \mathrm{H}$ NMR spectrum indicates that the hydrogen exchanged when the sample was shaken with $\mathrm{D}_{2} \mathrm{O}$. Room temperature is abbreviated to RT.

(1'RS,2'SR)-1-[3'-Methoxy-1'-(4-methoxyphenylsulfanyl)-2'methylpropyl]cyclohexene 7

Toluene- p-sulfonic acid monohydrate ($59.2 \mathrm{mg}, 0.311 \mathrm{mmol}$) was added to a stirred solution of the syn alcohol 23 in dry dichloromethane ($7.8 \mathrm{~cm}^{3}$), under argon, with light excluded, and the mixture heated to reflux (4 min); it was then heated under reflux for 12 min . After the mixture had been cooled in an ice-bath it was quenched with saturated aqueous sodium hydrogen carbonate $\left(25 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane ($15 \mathrm{~cm}^{3}$). Work-up and separation of the mixture by flash column chromatography on silica gave the syn-allylic sulfide 7 ($389.1 \mathrm{mg}, 81 \%$) as an oil; $R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.42 ; v_{\max }(\mathrm{smear}) / \mathrm{cm}^{-1}$ 1595 (Ar), 1575 (Ar), 1495 (Ar) and 825 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.27(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 6.78$ (2 $\mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}$), 5.12 ($1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}$), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeOAr}$), $3.34\left(1 \mathrm{H}, \mathrm{dd}, J 4.3\right.$ and 9.2, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OMe}\right), 3.27(1 \mathrm{H}, \mathrm{d}, J 9.6$, CHS), $3.27\left(3 \mathrm{H}, \mathrm{s}, M e \mathrm{OCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}}\right.$), $3.08(1 \mathrm{H}$, dd, $J 7.0$ and 9.2 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{C} \mathrm{H}_{\mathrm{B}} \mathrm{OMe}\right), 2.33-2.19\left[1 \mathrm{H}\right.$, br d, $\left.J 17.5,\left(\mathrm{CH}_{2}\right)_{4}\right], 2.07-$ $1.39\left[8 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{4}\right.$ and CHMe and $1.18(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{MeCH})$; $\delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.15 \mathrm{~b}, 135.86 \mathrm{a}, 135.13 \mathrm{~b}, 126.25 \mathrm{~b}$, 125.70a, 113.89a, 76.20b, 62.87a, 58.79a, 55.24a, 35.26a, 25.23b, 24.34b, 22.75b, 22.52b and 16.06a; $m / z 306$ ($11, \mathrm{M}^{+}$), $167\left(19, \mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right), 166\left(19, \mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}\right)$, $140\left(100, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}\right), 135\left(100, \mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right.$ and MeOH) and 121 (91, $\mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}$ and MeOMe) (Found: $\mathrm{M}^{+}, 306.1647 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 306.1654$).

(1'RS,2'SR)-1-[3'-Methoxy-1'-(4-methoxyphenylsulfanyl)-2'methylpropyl]cyclohexene 7

Toluene- p-sulfonic acid monohydrate ($313 \mathrm{mg}, 1.65 \mathrm{mmol}, 0.2$ equiv.) was added to a stirred solution of the alcohol 31 (16.5 $\mathrm{mg}, 50.8 \mu \mathrm{~mol})$ in dry benzene ($0.25 \mathrm{~cm}^{3}$), under argon, with light excluded, and the mixture heated to reflux (5 min). After the mixture had been heated under reflux for 5 min it was cooled in an ice-bath, filtered through a short silica column with dichloromethane as eluent and evaporated under reduced pressure. Flash column chromatography of the residue yielded the syn allylic sulfide $7(8.0 \mathrm{mg}, 51 \%)$ as an oil the spectra of which were identical with those described above.

(1'RS,2'RS)-1-[3'-Methoxy-1'-(4-methoxyphenylsulfanyl)-2'methylpropyl]cyclohexene 8

Under similar conditions but with the reaction carried out in dry dichloromethane and a period of heating under reflux of 1 h

50 min converted alcohol 24 into anti allylic sulfide $\mathbf{8}$ (192.4 mg , 52%); this was isolated as an oil after purification by flash column chromatography on silica eluting with hexane-diethyl ether ($15: 1$ to $5: 1$); $R_{\mathbf{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.45 ; v_{\max }(\mathrm{smear}) / \mathrm{cm}^{-1} 1595$ (Ar), $1575(\mathrm{Ar})$ and $1495(\mathrm{Ar}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.27(2 \mathrm{H}$, d, $J 8.7, \mathrm{ArH}), 6.78(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 5.06(1 \mathrm{H}, \mathrm{br} \mathrm{m},=\mathrm{CH})$, $3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{MeOAr}), 3.63(1 \mathrm{H}$, dd, $J 3.6$ and 9.2 , $\mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OMe}$), 3.47 (1 H , dd, $J 6.3$ and 9.2, $\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OMe}$), 3.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}$), $3.28(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{CHS}), 2.26[1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 17.2$, $\left.\left(\mathrm{CH}_{2}\right)_{4}\right], 2.20-1.40\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right.$ and CHMe] and $0.93(3 \mathrm{H}$, d, J 6.8, MeCH); $\delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.21 \mathrm{~b}, 136.04 \mathrm{a}$, 134.67b, 128.21b, 128.15a, 113.87a, 75.99b, 61.96a, 58.91a, $55.24 \mathrm{a}, 35.37 \mathrm{a}, 25.23 \mathrm{~b}, 23.81 \mathrm{~b}, 22.73 \mathrm{~b}, 22.54 \mathrm{~b}$ and 16.25 a ; m / z $306\left(34 \%, \mathrm{M}^{+}\right), 167\left(33, \mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right), 140$ (94 , $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}\right), 135\left(100, \mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right.$ and MeOH$), 121$ (87, $\mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}$ and MeOMe) (Found: $\mathrm{M}^{+}, 306.1683$. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 306.1653$).

[2RS,3SR,(E)]-7-Methoxy-5-(4-methoxyphenylsulfanyl)-4,6-dimethyl-1-phenylhept-3-ene 9

Toluene- p-sulfonic acid monohydrate ($38.3 \mathrm{mg}, 0.201 \mathrm{mmol}$) and alcohols 45 and 46 ($2.7: 1$) ($404.8 \mathrm{mg}, 1.04 \mathrm{mmol}$) were heated under reflux for 1 h in dry dichloromethane $\left(10.5 \mathrm{~cm}^{3}\right)$, under argon and with light excluded. After being cooled in an ice-bath, the mixture was filtered through a short silica column with dichloromethane as eluent and evaporated under reduced pressure. Repeated flash column chromatography of 97% of the mixture on silica (40 g) eluting with hexane-ethyl acetate ($16: 1$) yielded the allylic sulfide $9(209.6 \mathrm{mg}, 56 \%)$ as an oil of 93% purity; R_{F} (dichloromethane) 0.33 ; $v_{\text {max }}$ (smear) $/ \mathrm{cm}^{-1} 1595$ (Ar), $1570(\mathrm{Ar})$ and $1495(\mathrm{Ar}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.27-7.12(5 \mathrm{H}$, $\mathrm{m}, 2$ of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$ and 3 of PhH), $7.06(2 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{PhH}), 6.78$ ($2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{C}_{6} H_{4} \mathrm{OMe}$), $4.93(1 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}=$), $3.77(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeOAr}), 3.31(1 \mathrm{H}, \mathrm{d}, J 9.8, \mathrm{CHS}), 3.24(1 \mathrm{H}$, obscured, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OMe}\right), 3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \mathrm{OCH}_{2}\right), 3.01(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OMe}\right), 2.44\left(1 \mathrm{H}, \mathrm{dt}, J 13.7\right.$ and $\left.7.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 2.37$ $\left(1 \mathrm{H}, \mathrm{dt}, J 13.8\right.$ and $\left.7.1, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 2.16(2 \mathrm{H}, \mathrm{q}, J 7.5$, $\mathrm{CH}_{2} \mathrm{CH}=$), $1.95(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 1.61(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=)$ and 1.18 ($3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{MeCH}$); $\delta_{\mathrm{C}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $159.22 \mathrm{~b}, 142.04 \mathrm{~b}$, 135.78a, 133.13b, 128.29a, 128.23a, 128.08a, 126.11b, 125.72a, 114.05a, 76.09b, 64.43a, 58.77a, 55.27a, 35.45b, 35.22a, 29.51b, 16.05 a and $12.26 \mathrm{a} ; \mathrm{m} / \mathrm{z} 370\left(9.2 \%, \mathrm{M}^{+}\right), 230(7.2, \mathrm{M}-$ $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$), 199 ($20, \mathrm{M}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}$ and MeOH), 140 (30, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$) and 91 ($100, \mathrm{PhCH}_{2}$) (Found: M^{+}, 370.1955. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 370.1967$).

(1^{\prime} RS, 2'SR)-1-[3'-Benzyloxy-2'-methyl-1'-(phenylsulfanyl)propyl]cyclohexene 10

In the same way, a mixture of toluene- p-sulfonic acid monohydrate ($20.6 \mathrm{mg}, 0.108 \mathrm{mmol}$) and anti β-hydroxy sulfide $27(185 \mathrm{mg}, 0.50 \mathrm{mmol})$ in dry dichloromethane ($2.4 \mathrm{~cm}^{3}$) were heated to reflux (7 min) and refluxed for 6 min . Filtration and flash column chromatography on silica (30 g) eluting with hexane-diethyl ether ($30: 1$) gave syn allylic sulfide 10 (134 mg , 76%) as an oil; R_{F} [hexane-diethyl ether (10:1)] 0.43; $v_{\max }($ smear $) / \mathrm{cm}^{-1} 3060(=\mathrm{CH}) 3030(\mathrm{PhH}), 2980-2830(\mathrm{CH})$, $1585(\mathrm{Ph}), 750(\mathrm{Ph}), 740(\mathrm{C}=\mathrm{CH})$ and $700(\mathrm{Ph}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.36-7.14(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.29(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}), 4.47(1$ $\left.\mathrm{H}, \mathrm{d}, J 12.1, \mathrm{CH}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}} \mathrm{Ph}\right), 4.43\left(1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{CH}^{\mathrm{A}} H^{\mathrm{B}} \mathrm{Ph}\right), 3.54$ ($1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{CHS}$), 3.45 ($1 \mathrm{H}, \mathrm{dd}, J 4.6$ and $9.1, \mathrm{C}^{\mathrm{D}} \mathrm{H}^{\mathrm{E}} \mathrm{OBn}$), $3.24\left(1 \mathrm{H}, \mathrm{dd}, J 6.6\right.$ and $\left.9.1, \mathrm{CH}^{\mathrm{D}} H^{\mathrm{E}} \mathrm{OBn}\right), 2.23[1 \mathrm{H}, \mathrm{brd}, J c a$. 16, $\left.\left(\mathrm{CH}_{2}\right)_{5}\right], 2.08(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 1.96-1.68\left[3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right]$, 1.63-1.35 [4 H, m, $\left.\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.20(3 \mathrm{H}, \mathrm{d}, \mathrm{CHMe}) ; \delta_{\mathrm{C}}(400$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 138.60b, 136.16b, 135.15b, 132.74a, 128.35a, $128.27 \mathrm{a}, 127.55 \mathrm{a}, 127.44 \mathrm{a}, 126.57 \mathrm{a}, 125.81 \mathrm{a}, 73.59 \mathrm{~b}, 73.05 \mathrm{~b}$, 61.25a, 35.74a, 25.21b, 24.65b, 22.74b, 22.46b and $15.91 \mathrm{a} ; \mathrm{m} / \mathrm{z}$ $352\left(19 \%, \mathrm{M}^{+}\right), 243(11, \mathrm{M}-\mathrm{PhS})$ and $91\left(100, \mathrm{PhCH}_{2}\right)$ (Found: $\mathrm{M}^{+}, 352.1874 . \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{OS}$ requires $M, 352.1861$).

1-(4-Methoxyphenylsulfanyl)cyclohexanecarbaldehyde 11
Thionyl chloride ($3.2 \mathrm{~cm}^{3}, 44.1 \mathrm{mmol}$) was added, over 25 min ,
to a stirred solution of the alcohol $14(11.8 \mathrm{~g}, 41.8 \mathrm{mmol})$ and triethylamine ($99 \% ; 6.2 \mathrm{~cm}^{3}, 44.0 \mathrm{mmol}$) in dry dichloromethane ($42 \mathrm{~cm}^{3}$) under nitrogen at $-2{ }^{\circ} \mathrm{C}$, the temperature of the mixture not rising above $9^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h between -5 and $-2^{\circ} \mathrm{C}$ and then quenched with ice cold water ($20 \mathrm{~cm}^{3}$). Aqueous hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 50$ cm^{3}) was added to the mixture which was then extracted with dichloromethane $\left(1 \times 20 \mathrm{~cm}^{3}, 3 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure and the residue was separated by flash column chromatography on silica (300 g) eluting with hexane-diethyl ether ($8: 1-5: 1$). The impure fractions were rechromatographed to yield the aldehyde $11(9.10 \mathrm{~g}, 87 \%)$ as a cream-coloured solid, $\mathrm{mp}<30^{\circ} \mathrm{C} ; R_{\mathrm{F}}$ (dichloromethane) $0.48 ; v_{\text {max }}($ smear $) / \mathrm{cm}^{-1} 3010$ (ArH), 2940-2800 (CH), $2710(\mathrm{CH}$ of aldehyde), $1715(\mathrm{C}=\mathrm{O})$, 1595 (Ar), 1570 (Ar), 1495 (Ar) and 830 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$; CDCl_{3}) $9.27(1 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{CH}), 7.30(2 \mathrm{H}$, $\mathrm{d}, J 8.7, \mathrm{ArH}), 6.83(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO})$, $1.89-1.75\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right], 1.66-1.52\left[3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.44-1.29\left[3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right] ; \delta_{\mathrm{C}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 194.47 \mathrm{a}$, 160.89 , 138.76a, 119.44, 114.49a, 59.97, 55.31a, 30.35b, 25.50b and 23.06b; $m / z 250\left(34, \mathrm{M}^{+}\right), 221$ ($85, \mathrm{M}-\mathrm{CHO}$), 140 (86, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$), $139\left(94, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right)$ and 59 (100) (Found: $\mathrm{M}^{+}, 250.1006 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 250.1028$)

Chloromethyl (4-methoxyphenyl) sulfide 12

Sodium hydride (80% suspension in oil; $5.48 \mathrm{~g}, 0.183 \mathrm{~mol}$) was added to a stirred solution of 4-methoxybenzenethiol $(25.1 \mathrm{~g}$, 0.174 mol) in dry THF ($1.0 \mathrm{dm}^{3}$) under nitrogen at RT. After being stirred for 1 h , the mixture was treated with bromochloromethane $\left(98 \% ; 12.5 \mathrm{~cm}^{3}, 0.183 \mathrm{~mol}\right)$ and stirred for a further 2.5 h . The mixture was then filtered through Kieselguhr eluting with diethyl ether and evaporated under reduced pressure. The resultant oil was distilled to give the slightly impure chloride ($16.4 \mathrm{~g}, 50 \%$) as an oil, bp $96^{\circ} \mathrm{C}$ at $0.3-$ $0.4 \mathrm{mmHg} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.52(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}), 6.93$ $(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 4.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Cl}\right)$ and $3.84(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeO}) ; \delta_{\mathrm{c}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 160.36,134.85 \mathrm{a}, 123.45,114.86 \mathrm{a}$, 55.42 a and $53.13 \mathrm{~b} ; \mathrm{m} / \mathrm{z} 190\left(29 \%, \mathrm{M}^{+}\right.$with $\left.{ }^{37} \mathrm{Cl}\right)$, $188\left(68, \mathrm{M}^{+}\right.$ with $\left.{ }^{35} \mathrm{Cl}\right), 153(79, \mathrm{M}-\mathrm{Cl})$ and $139\left(100, \mathrm{M}-\mathrm{CH}_{2} \mathrm{Cl}\right)$.

Methoxymethyl 4-methoxyphenyl sulfide 13

Sodium methoxide ($5.01 \mathrm{~g}, 90.0 \mathrm{mmol}$) was added to a stirred solution of the chloride $12(16.3 \mathrm{~g}, 86.4 \mathrm{mmol})$ in methanol and the resulting mixture stirred at RT for 2 h 10 min before removal of the solvent under reduced pressure. The residue was dissolved in water ($200 \mathrm{~cm}^{3}$) and extracted with diethyl ether $\left(200 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The resultant yellow oil was distilled in vacuo to yield the title compound $13(13.4 \mathrm{~g}, 84 \%)$ as an oil, bp $86^{\circ} \mathrm{C}$ at $0.3-0.4 \mathrm{mmHg} ; R_{\mathrm{F}}$ [hexane-diethyl ether (10:1)] $0.39 ; v_{\max }(\mathrm{smear}) / \mathrm{cm}^{-1} 1595(\mathrm{ArH}), 1570(\mathrm{ArH})$ and 830 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.43(2 \mathrm{H}, \mathrm{d}$, $J 8.8, \mathrm{ArH}), 6.86(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}), 4.85\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{O}\right), 3.79$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$) and 3.45 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OMe}$); $\delta_{\mathrm{C}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 159.36, 133.69a, 126.01, 114.62a, 79.29b, 56.00a and $55.37 \mathrm{a} ; m / z 184\left(100 \%, \mathrm{M}^{+}\right), 154\left(28, \mathrm{M}-\mathrm{CH}_{2} \mathrm{O}\right), 139$ (41, $\mathrm{M}-\mathrm{CH}_{2} \mathrm{OMe}$) and 45 ($89, \mathrm{M}-\mathrm{MeOCH}_{2}$) (Found: M^{+}, 184.0560. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 184.0558$).

1-[Methoxy(4-methoxyphenylsulfanyl)methyl]cyclohexanol 14
Butyllithium ($2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $29 \mathrm{~cm}^{3}, 72.5$ mmol) was added over 7 min to a stirred solution of the sulfide $13(13.3 \mathrm{~g}, 72.1 \mathrm{mmol})$ in dry THF ($80 \mathrm{~cm}^{3}$) under nitrogen, the temperature being maintained at -45 to $-28^{\circ} \mathrm{C}$. After being stirred for 25 min the now brown-yellow solution was treated with cyclohexanone ($7.5 \mathrm{~cm}^{3}, 72.2 \mathrm{mmol}$); it immediately turned pale yellow. Stirring was continued for a further 30 min with the temperature being allowed to rise to $-20^{\circ} \mathrm{C}$; the reaction was then quenched by addition of saturated aqueous ammonium chloride ($200 \mathrm{~cm}^{3}$) to the mixture which was then
extracted with diethyl ether ($3 \times 200 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure and the mixture separated by repeated flash column chromatography on silica (424 g) eluting with hexane-diethyl ether (9:1-4:1) to give the alcohol $14(12.01 \mathrm{~g}, 59 \%$) as an oil; $R_{\mathrm{F}}\left[\right.$ hexane-diethyl ether (3:1)] 0.36; $v_{\text {max }}(\mathrm{smear}) / \mathrm{cm}^{-1} 3510$ (OH), 1595 (Ar), 1570 (Ar), 1495 (Ar) and 830 (paradisubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.46(2 \mathrm{H}, \mathrm{d}, J 8.9$, ArH), 6.83 ($2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}$), 4.32 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHS}$), $3.79(3 \mathrm{H}, \mathrm{s}$, ArOMe), $3.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CHOMe}), 2.24(1 \mathrm{H}$, very br s, OH), $1.78-1.46\left[9 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.27-1.08\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right]$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.47,135.29 \mathrm{a}, 126.39,114.74 \mathrm{a}, 104.89 \mathrm{a}$, $74.19,57.90 \mathrm{a}, 55.37 \mathrm{a}, 33.24 \mathrm{~b}, 32.76 \mathrm{~b}, 25.76 \mathrm{~b}, 21.76 \mathrm{~b}$ and 21.40b; $m / z 282\left(26 \%, \mathrm{M}^{+}\right), 143\left(62, \mathrm{M}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right)$ and 140 (100, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$) (Found: $\mathrm{M}^{+}, 282.1279 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$ requires M, 282.1289).
Methyl 3-hydroxy-3-[1-(4-methoxyphenylsulfanyl)cyclohexyl]-2-methylpropionate 15, 16
Methyl propionate ($2.8 \mathrm{~cm}^{3}, 29.1 \mathrm{mmol}$) was added over 5 min to a stirred solution of LDA [made from butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $19.5 \mathrm{~cm}^{3}, 31.2 \mathrm{mmol}$) and diisopropylamine ($4.4 \mathrm{~cm}^{3}, 31.1 \mathrm{mmol}$)] in dry THF $\left(150 \mathrm{~cm}^{3}\right)$, under argon, and cooled in a CO_{2}-acetone bath. After being stirred for 30 min at $<-68^{\circ} \mathrm{C}$ the mixture was treated with a solution of the aldehyde $11(7.02 \mathrm{~g}, 28 \mathrm{mmol})$ in dry THF (10 cm^{3}), added slowly and washed in with THF ($5 \mathrm{~cm}^{3}$). Stirring was continued for 4 h with the temperature rising gradually to $-45^{\circ} \mathrm{C}$. After this the reaction was quenched by the addition of saturated aqueous ammonium chloride ($100 \mathrm{~cm}^{3}$) and water ($100 \mathrm{~cm}^{3}$) to the mixture which was then extracted with diethyl ether ($3 \times 200 \mathrm{~cm}^{3}$). The combined extracts were washed with hydrochloric acid ($3 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 200 \mathrm{~cm}^{3}$) and the aqueous layer back-extracted with diethyl ether ($400 \mathrm{~cm}^{3}$). The combined ethereal extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure and the mixture was separated by flash column chromatography on silica (600 g) with dichloro-methane-methanol ($800: 1$ to $200: 1$) as eluent. Impure fractions were rechromatographed. This yielded the anti ($2 \mathrm{RS}, 3 \mathrm{SR}$)-aldol 15 ($2.28 \mathrm{~g}, 24 \%$) as an oil; $R_{\mathrm{F}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$ (400:1)] 0.19; $v_{\max }($ smear $) / \mathrm{cm}^{-1} 3470(\mathrm{OH}), 1740 \quad(\mathrm{C}=\mathrm{O}$, conformer without hydrogen bonding), $1710(\mathrm{C}=\mathrm{O}$, conformer with hydrogen bonding), 1595 (Ar), 1570 (Ar) and 1495 (Ar); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.37(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}), 6.82$ (2 $\mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}), 4.18(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.71$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.48$ ($1 \mathrm{H}, \mathrm{dq}, J 1.9$ and 7.3 , CHMe), $3.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{CHOH}), 2.05-1.03\left[10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.34(3 \mathrm{H}, \mathrm{d}, J 7.3)$; $\delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 178.14 \mathrm{~b}, 160.24 \mathrm{~b}, 138.44 \mathrm{a}, 121.32 \mathrm{~b}$, 114.23a, 79.30a, 58.90b, 55.25a, 51.94a, 37.10a, 30.6lb, 29.75b, $25.74 \mathrm{~b}, 21.89 \mathrm{~b}, 21.67 \mathrm{~b}$ and $17.97 \mathrm{a} ; m / z 338\left(5.4 \%, \mathrm{M}^{+}\right), 221$ [53, $\left.\mathrm{M}^{+}-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Me}\right], \quad 199$ (19, $\mathrm{M}^{+}-\mathrm{MeO}-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}$), $181\left(41, \mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and 140 (100, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$) (Found: M^{+}, 338.1564. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$ requires M, 338.1552) and the $\operatorname{syn}(2 \mathrm{RS}, 3 \mathrm{RS})$-aldol $16(3.35 \mathrm{~g}, 35 \%$) as plates, $\mathrm{mp} 84.5-85.5^{\circ} \mathrm{C}$ (from hexane); $R_{\mathrm{F}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(400: 1)\right]$ $0.16 ; v_{\max }$ (Nujol mull)/ $/ \mathrm{cm}^{-1} 3520(\mathrm{OH}), 1720(\mathrm{C}=\mathrm{O}), 1590(\mathrm{Ar})$, $1570(\mathrm{Ar})$ and $1495(\mathrm{Ar}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.42(2 \mathrm{H}, \mathrm{d}, J 8.6$, ArH), 6.84 ($2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}$), 3.80 ($3 \mathrm{H}, \mathrm{s}$, MeOAr), 3.73 (1 H , d, $J 5.7, \mathrm{CHOH}$), $3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{MeOCO}), 2.97(1 \mathrm{H}, \mathrm{qn}, J 6.5$, $\mathrm{C} H \mathrm{Me}), 2.01-1.12\left[10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.28(3 \mathrm{H}, \mathrm{d}, J 7.0$, $\mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.80 \mathrm{~b}, 160.40 \mathrm{~b}, 138.48 \mathrm{a}$, 120.59b, 114.39a, 74.32a, 60.99b, 55.25a, 51.79a, 40.37a, 30.90b, 30.16b, 25.92b, 21.86b and 14.32a; $m / z 338\left(2.1 \%, \mathrm{M}^{+}\right)$, 221 $\left[19, \mathrm{M}^{+}-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Me}\right], 181$ (19, $\mathrm{M}^{+}-\mathrm{Me}-$ $\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{O}$) and 140 (100, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$) (Found: C, $64.0 ; \mathrm{H}, 7.7 ; \mathrm{S}, 9.4 \% ; \mathrm{M}^{+}, 338.1524 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$ requires C , $63.88 ; \mathrm{H}, 7.74 ; \mathrm{S}, 9.47 \%$; M, 338.1552).

(3RS,4SR)-4-(4-Methoxyphenylsulfanyl)-3-methyl-1-oxa-spiro[4.5]decan-2-one 17

By the same procedure as for 9 above, a solution of toluene- p -
sulfonic acid monohydrate ($170.3 \mathrm{mg}, 0.895 \mathrm{mmol}$) and the alcohol $15(1.55 \mathrm{~g}, 4.58 \mathrm{mmol})$ in dry dichloromethane ($23 \mathrm{~cm}^{3}$) was heated under reflux for 9 h 30 min to give, after filtration, the anti lactone $17(1.35 \mathrm{~g}, 96 \%)$ as needles, $\mathrm{mp} 124-126^{\circ} \mathrm{C}$ (from hexane-ethyl acetate); $R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.32 ; v_{\text {max }}(\mathrm{Nujol}$ mull) $/ \mathrm{cm}^{-1} 1770(\mathrm{C}=\mathrm{O}), 1595(\mathrm{Ar}), 1575(\mathrm{Ar}), 1495(\mathrm{Ar})$ and 825 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.43$ ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}$) $6.85(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}), 3.80(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeO}), 2.94(1 \mathrm{H}, \mathrm{d}, J 12.3, \mathrm{CHSAr}), 2.65(1 \mathrm{H}, \mathrm{dq}, J 12.3$ and 7.0, CHMe), $1.99-1.90\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right], 1.85-1.51[8 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right], 1.27(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{MeCH})$ and $1.25-1.08[1 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right] ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.52 \mathrm{~b}, 160.00 \mathrm{~b}, 135.64 \mathrm{a}$, $124.22 \mathrm{~b}, 114.87 \mathrm{a}, 86.85 \mathrm{~b}, 63.25 \mathrm{a}, 55.35 \mathrm{a}, 41.32 \mathrm{a}, 36.18 \mathrm{~b}$, $31.68 \mathrm{~b}, 25.10 \mathrm{~b}, 22.40 \mathrm{~b}, 21.44 \mathrm{~b}$ and $13.86 \mathrm{a} ; \mathrm{m} / \mathrm{z} 306(53 \%$, M^{+}), $180\left(100, \mathrm{M}-\mathrm{CO}_{2}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{10}\right)$ and $140(23, \mathrm{MeO}-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SH}$) (Found: C, 66.5; H, 7.2; S, $10.6 \% ; \mathrm{M}^{+}, 306.1268$. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{OS}$ requires $\mathrm{C}, 66.64 ; \mathrm{H}, 7.24 ; \mathrm{S}, 10.46 \% ; M$, 306.1289).

(3SR,4SR)-4-(4'-Methoxyphenylsulfanyl)-3-methyl-1-oxa-

 spiro[4.5]decan-2-one 18 and ($2 S R, 3 S R$) methyl 3-(cyclohex-1'-enyl)-3-(4"-methoxyphenylsulfanyl)-2-methylpropionate 19 In the same way, a solution of toluene- p-sulfonic acid monohydrate ($313 \mathrm{mg}, 1.65 \mathrm{mmol}$) and the aldol $16(2.79 \mathrm{~g}$, $8.23 \mathrm{mmol})$ in dry dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$, was heated under reflux for 4 h 30 min . Filtration and flash column chromatography on silica eluting with dichloromethane gave the lactone $18\left(1.303 \mathrm{~g}, 52 \%\right.$) as prisms, $\mathrm{mp} 65-67^{\circ} \mathrm{C}$ (from hexane-diethyl ether); R_{F} (dichloromethane) $0.25 ; v_{\max }$ (Nujol mull) $/ \mathrm{cm}^{-1} 1770(\mathrm{C}=\mathrm{O}$), 1595 (Ar), 1495 (Ar) and 830 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.36(2 \mathrm{H}, \mathrm{d}, J$ 8.8, ArH), $6.85(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.63(1$ $\mathrm{H}, \mathrm{d}, J 9.0, \mathrm{CHS}), 3.01(1 \mathrm{H}, \mathrm{dq}, J 9.0$ and $7.7, \mathrm{CHMe}), 1.96-$ $1.50\left[9 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right], 1.41(3 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{MeCH})$ and $1.32-$ $1.12\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right] ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 177.90 \mathrm{~b}, 159.48 \mathrm{~b}$, 133.93a, 125.28b, 114.94a, 87.34b, 59.62a, 55.35a, 39.31a, $36.79 \mathrm{~b}, 34.15 \mathrm{~b}, 24.86 \mathrm{~b}, 22.64 \mathrm{~b}, 21.96 \mathrm{~b}$ and $13.81 \mathrm{a} ; \mathrm{m} / \mathrm{z} 306$ $\left(63 \%, \mathrm{M}^{+}\right), 180\left(100, \mathrm{M}^{+}-\mathrm{CO}_{2}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{10}\right)$ and 140 (52, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$) (Found: $\mathrm{M}^{+}, 306.1295 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 306.1290)$; and the allylic sulfide $19(934.9 \mathrm{mg}, 36 \%)$ as an oil; R_{F} (dichloromethane) $0.46 ; v_{\text {max }}$ (smear) $/ \mathrm{cm}^{-1} 1740(\mathrm{C}=\mathrm{O})$, 1595 (Ar), 1575 (Ar), 1495 (Ar) and 840 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.28(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}), 6.78$ ($2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}$), $5.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH}), 3.78(3 \mathrm{H}, \mathrm{s}$, ArMe), $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.43(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{CHS}), 2.66$ $(1 \mathrm{H}, \mathrm{dq}, J 11.6$ and $6.8, \mathrm{C} H \mathrm{Me}), 2.25[1 \mathrm{H}$, vbr d, J ca. 17, $\left.\left(\mathrm{CH}_{2}\right)_{4}\right], 1.96-1.40\left[7 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right]$ and $1.08(3 \mathrm{H}, \mathrm{d}, J 6.9$, $\mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.88 \mathrm{~b}, 159.57 \mathrm{~b}, 136.54 \mathrm{a}$, $133.11 \mathrm{~b}, 126.99 \mathrm{a}, 125.11 \mathrm{~b}, 113.90 \mathrm{a}, 61.53 \mathrm{a}, 55.23 \mathrm{a}, 51.74 \mathrm{a}$, $42.20 \mathrm{a}, 25.23 \mathrm{~b}, 23.76 \mathrm{~b}, 22.65 \mathrm{~b}, 22.44 \mathrm{~b}$ and $16.59 \mathrm{a} ; \mathrm{m} / \mathrm{z} 320$ $\left(41 \%, \mathbf{M}^{+}\right), 181\left(28, \mathbf{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right), 149\left(36, \mathbf{M}^{+}-\right.$ $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}$ and MeOH$), 140\left(100, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}\right)$ and 121 (66, $\mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}$, MeOH and CO) (Found: M^{+}, 320.1459. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 320.1446$).
(2SR,3RS)-3-(1-Hydroxycyclohexyl)-3-(4-methoxyphenyl-sulfanyl)-2-methylpropan-1-ol 20

Lithium aluminium hydride $(95 \% ; 58.4 \mathrm{mg}, 1.46 \mathrm{mmol})$ and the anti lactone 17 ($378.4 \mathrm{mg}, 1.23 \mathrm{mmol}$) in dry THF $\left(6 \mathrm{~cm}^{3}\right)$ were stirred at RT for 3.5 h after which the reaction was quenched with ice. Aqueous potassium sodium tartrate $\left(0.5 \mathrm{~mol} \mathrm{dm}^{-3} ; 200\right.$ cm^{3} solution) and aqueous sodium hydroxide (10% solution; 30 cm^{3}) were added to the mixture which was then extracted with diethyl ether $\left(2 \times 100 \mathrm{~cm}^{3}\right)$ and then dichloromethane $\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. Flash column chromatography of the residue on silica (26 g) with dichloromethanemethanol ($50: 1$) as eluent yielded the syn diol $20(345.2 \mathrm{mg}$, 90%) as plates, $\mathrm{mp} 86-87^{\circ} \mathrm{C} ; R_{\mathrm{F}}$ [dichloromethane-methanol (50:1)] 0.20; $v_{\max }($ Nujol mull $) / \mathrm{cm}^{-1} 3280(\mathrm{OH}), 1595$ (Ar), 1575
(Ar), 1495 (Ar) and 820 (para disubstituted benzene); $\delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.44(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}), 6.80(2 \mathrm{H}, \mathrm{d}, J 8.9$, $\mathrm{ArH}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.75(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and 10.5, $\left.\mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.58\left(1 \mathrm{H}, \mathrm{dd}, J 4.9\right.$ and $\left.10.6, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.42(1$ $\mathrm{H}, \mathrm{d}, J 2.1, \mathrm{CHS}), 2.39(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 1.84(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $1.78-1.08\left[10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.01(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{MeCH})$; $\delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 158.65 \mathrm{~b}, 133.09 \mathrm{a}, 128.5 \mathrm{lb}, 114.70 \mathrm{a}$, $74.85 \mathrm{~b}, 66.68 \mathrm{~b}, 64.21 \mathrm{a}, 55.29 \mathrm{a}, 37.60 \mathrm{~b}, 35.96 \mathrm{a}, 35.05 \mathrm{~b}, 25.61 \mathrm{~b}$, 22.14 b and $12.95 \mathrm{a} ; m / z 310\left(1.9 \%, \mathbf{M}^{+}\right), 212\left(100, \mathbf{M}^{+}-\right.$ $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$) and $140\left(76, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}\right)$ (Found: $\mathrm{M}^{+}, 310.1575$. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 310.1603$).

($2 R S$ and $2 S R, 3 R S, 4 S R$)-4-(4-Methoxyphenylsulfanyl)-3-methyl-1-oxaspiro[4.5]decan-2-ol 21

In the same way, reduction of the anti lactone $17(119.3 \mathrm{mg}$, 0.389 mmol) for 2 h at $4-15^{\circ} \mathrm{C}$ and then for 1 h 10 min at RT gave syn diol $20(89.5 \mathrm{mg}, 74 \%)$ and the hemiacetal $21(22.7 \mathrm{mg}$, 18%) as a $1: 1$ mixture of anomers anti anti (A) and syn anti (B); R_{F} [dichloromethane-methanol ($50: 1$)] $0.47 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$;
 $\mathrm{ArH}), 6.81\left(2 \mathrm{H}^{\mathrm{A}}\right.$ and $\left.\mathrm{B}, \mathrm{d}, J 8.8, \mathrm{ArH}\right), 5.23\left(1 \mathrm{H}^{\mathrm{B}}\right.$, br s, CHOH$)$, $5.00\left(1 \mathrm{H}^{\mathrm{A}}, \mathrm{t}, J 4.6, \mathrm{CHOH}\right), 3.79\left(3 \mathrm{H}^{\mathrm{A} \text { and } \mathrm{B}}, \mathrm{s}, \mathrm{MeO}\right), 3.48(1$ $\left.\mathrm{H}^{\mathrm{A}}, \mathrm{d}, J 4.4, \mathrm{CHO} H\right), 3.00\left(1 \mathrm{H}^{\mathrm{A}}\right.$ or $\left.{ }^{\mathrm{B}}, \mathrm{d}, 12.4, \mathrm{CHS}\right), 2.91\left(1 \mathrm{H}^{\mathrm{B}}\right.$, $\mathrm{d}, J 2.4, \mathrm{CHO} H), 2.66\left(1 \mathrm{H}^{\mathrm{A} \text { or } \mathrm{B}}, \mathrm{d}, J 11.3, \mathrm{CHS}\right), 2.18\left(1 \mathrm{H}^{\mathrm{A} \text { and } \mathrm{B}}\right.$, $\mathrm{m}, \mathrm{C} H \mathrm{Me}), 1.80-1.46\left[10 \mathrm{H}^{\mathrm{A} \text { and } \mathrm{B}}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right], 1.17\left(3 \mathrm{H}^{\mathrm{A} \text { or } \mathrm{B}^{\prime} \text {, }, ~}\right.$ $\mathrm{d}, J 6.8, \mathrm{CH} M e)$ and $1.13\left(3 \mathrm{H}^{\mathrm{A}}\right.$ or $\left.\mathrm{B}, J 6.8, \mathrm{CH} M e\right) ; \delta_{\mathrm{C}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 159.38 \mathrm{~b}, 159.27 \mathrm{~b}, 135.04 \mathrm{a}, 134.88 \mathrm{a}, 126.26 \mathrm{~b}, 125.98 \mathrm{~b}$, $114.55 \mathrm{a}, 114.52 \mathrm{a}, 102.77 \mathrm{a}, 97.31 \mathrm{a}, 85.15 \mathrm{~b}, 65.74 \mathrm{a}, 63.37 \mathrm{a}$, $55.30 \mathrm{a}, 47.66 \mathrm{a}, 44.20 \mathrm{a}, 38.72 \mathrm{~b}, 36.90 \mathrm{~b}, 33.92 \mathrm{~b}, 32.69 \mathrm{~b}, 25.61 \mathrm{~b}$, $25.47 \mathrm{~b}, 23.02 \mathrm{~b}, 22.93 \mathrm{~b}, 21.9 \mathrm{lb}, 21.80 \mathrm{~b}, 15.74 \mathrm{a}$ and $11.84 \mathrm{a} ; \mathrm{m} / \mathrm{z}$ $308\left(30 \%, \mathrm{M}^{+}\right), 210\left(48, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right)$ and $140(100$, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$) (Found: $\mathrm{M}^{+}, 308.1443 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}$ requires M, 308.1446).

(2RS,3RS)-3-(1-Hydroxycyclohexyl)-3-(4-methoxyphenyl-sulfanyl)-2-methylpropan-1-0l 22

In the same way, reduction of the syn lactone $18(32.2 \mathrm{mg}$, 0.105 mmol) with cooling in an ice-bath for 1 h followed by quench, work-up and flash column chromatography on silica $(3.5 \mathrm{~g})$ with dichloromethane-methanol ($50: 1$) as eluent gave the anti diol $22(26.6 \mathrm{mg}, 82 \%)$ as prisms, $\mathrm{mp} 112.5-115^{\circ} \mathrm{C}$ (ethyl acetate); $R_{F}[$ dichloromethane-methanol ($50: 1$)] 0.25 ; $v_{\max }\left(\right.$ Nujol mull)/ $/ \mathrm{cm}^{-1} 3230-3130(\mathrm{OH}), 1595$ (Ar), 1570 (Ar), $1495(\mathrm{Ar})$ and 830 (p-disubstituted benzene); $\delta_{\mathbf{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.38(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 6.81(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}), 3.78$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.74\left(1 \mathrm{H}, \mathrm{dd}, J 9.4\right.$ and $\left.12.0, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right)$, $3.44^{*}(2 \mathrm{H}$, br $\mathrm{s}, \mathrm{OH}), 3.38(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and 12.2 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 3.05(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{CHS}), 2.59(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe})$, $2.04-1.95\left[2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{eq} .} \mathrm{COH}\right.$ of $\left(\mathrm{CH}_{2}\right)_{5}$, signal not wide enough to be axial protons], $1.70-1.16\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.11(3 \mathrm{H}, \mathrm{d}, J 6.9, M e \mathrm{CH}) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 158.75 \mathrm{~b}$, $133.34 \mathrm{a}, 128.62 \mathrm{~b}, 114.64 \mathrm{a}, 74.89 \mathrm{~b}, 69.59 \mathrm{a}, 64.76 \mathrm{~b}, 55.30 \mathrm{a}$, 38.28b, 35.38a, 34.88b, 25.56b, 22.26b, 22.05b and 18.86a (Found: $\mathrm{C}, 65.8 ; \mathrm{H}, 8.4 ; \mathrm{S}, 10.6 . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}$ requires C , 65.77 ; H, 8.44; S, 10.33%).

(1'RS,2'SR)-1-[3'-Methoxy-1'-(4"-methoxyphenylsulfanyl)-2'methylpropyl]cyclohexanol 23

Aq. sodium hydroxide ($50 \% ; 0.270 \mathrm{~cm}^{3}, 3.38 \mathrm{mmol}$) was added to a solution of the syn diol $20(801.6 \mathrm{mg}, 2.58 \mathrm{mmol})$ and tetrabutylammonium iodide $(98 \% ; 0.985 \mathrm{~g}, 2.61 \mathrm{mmol})$ in dry dichloromethane $\left(2.6 \mathrm{~cm}^{3}\right)$ over 5 min and the mixture stirred at RT for 50 min . Cooling in an ice-bath was followed by addition of dimethyl sulfate $\left(0.370 \mathrm{~cm}^{3}, 3.90 \mathrm{mmol}\right)$ over 50 min . The icebath was removed and the mixture was stirred for 24 h at RT before treatment with concentrated aqueous ammonia ($3 \mathrm{~cm}^{3}$). The mixture was then stirred for 35 min after which it was poured into water $\left(100 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The mixture was separated by flash column chromatography on silica with
dichloromethane-methanol (200:3) as eluent; the impure fractions were then combined and separated on silica with dichloromethane-methanol ($10: 1$) as eluent, to yield the syn alcohol 23 ($576.0 \mathrm{mg}, 69 \%, 91 \%$ on unrecovered starting material) as an oil; $R_{\mathrm{F}}\left[\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ (1:50)] 0.55; $\nu_{\text {max }}$ (smear)/ $\mathrm{cm}^{-1} 3490(\mathrm{OH}), 1595(\mathrm{Ar}), 1575(\mathrm{Ar}), 1495(\mathrm{Ar})$ and 825 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $7.39(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 6.80(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{ArH}), 3.77(3 \mathrm{H}, \mathrm{s}$, MeOAr), $3.54\left(1 \mathrm{H}, \mathrm{t}, J 9.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OMe}\right), 3.43(1 \mathrm{H}, \mathrm{d}, J 2.1$, CHS), $3.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \mathrm{OCH}_{2}\right), 3.23$ [1 H , dd (partially obscured), $J 9.2$ and 4.6, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OMe}\right], 2.46(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me})$, 1.99* ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $1.79-1.06\left[10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right]$ and 0.98 (3 $\mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 158.44 \mathrm{~b}, 132.67 \mathrm{a}$, $128.92 \mathrm{~b}, 114.52 \mathrm{a}, 76.41 \mathrm{~b}, 74.74 \mathrm{~b}, ~ 63.90 \mathrm{a}, ~ 58.27 \mathrm{a}, ~ 55.27 \mathrm{a}$, 37.88b, 34.97b, 33.25a, 25.63b, 22.15b and 12.99a; m/z 324 $\left(5.2 \%, \mathrm{M}^{+}\right), 226\left(100, \mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right), 194$ (32, $\mathrm{M}^{+}-$ $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$ and MeOH) and 140 ($87, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$) (Found: $\mathrm{M}^{+}, 324.1758 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 324.1760$).

($1^{\prime} R S, 2^{\prime} R S$)-1-[3'-Methoxy-1'-(4"-methoxyphenylsulfanyl)-2'methylpropyl]cyclohexanol 24

Aq. sodium hydroxide ($50 \% ; 0.385 \mathrm{~cm}^{-3}, 4.81 \mathrm{mmol}$) was added to a solution of the anti diol $22(572.1 \mathrm{mg}, 1.84 \mathrm{mmol})$ and tetrabutylammonium iodide $(98 \% ; 1.33 \mathrm{~g}, 3.52 \mathrm{mmol})$ in dry dichloromethane ($2.77 \mathrm{~cm}^{3}$) and the mixture stirred at RT for 30 min . Cooling in an ice-bath was followed by addition of dimethyl sulfate ($0.523 \mathrm{~cm}^{-3}, 5.53 \mathrm{mmol}$) over 50 min . After removal of the ice-bath, the mixture was stirred at RT for 21 h . After being quenched, work-up of the mixture as for $\mathbf{2 3}$ above and flash column chromatography on silica (61 g) with dichloromethane-methanol ($40: 1$) as eluent and then on silica (68 g) with dichloromethane-methanol ($80: 1$) as eluent gave the anti alcohol 24 ($454.3 \mathrm{mg}, 76 \%$) as an oil; R_{F} [dichloromethane-methanol (50:1)] $0.62 ; R_{\mathrm{F}}[$ hexane-ethyl acetate (3:1)] 0.34; $v_{\text {max }}($ smear $) / \mathrm{cm}^{-1} 3400(\mathrm{OH}), 1595(\mathrm{Ar})$, 1575 (Ar), 1495 (Ar) and 830 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.40(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}), 6.79(2 \mathrm{H}, \mathrm{d}, J$ 8.9, ArH), $4.16(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 3.71(1 \mathrm{H}$, d, $J 9.3, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OMe}$), $3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OMe}\right), 3.21(1 \mathrm{H}, \mathrm{dd}$, $J 4.2$ and $\left.9.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OMe}\right), 2.99(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 1.5, \mathrm{CHS}), 2.61$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 2.14\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right], 1.85-1.10[9 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.02(3 \mathrm{H}, \mathrm{d}, J 6.9) ; \delta_{\mathrm{c}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $158.50 \mathrm{~b}, 133.40 \mathrm{a}, 129.77 \mathrm{~b}, 114.45 \mathrm{~b}, 75.02 \mathrm{~b}, 73.29 \mathrm{~b}, 69.22 \mathrm{a}$, 58.68a, 55.26a, 37.37b, 36.48b, 33.45a, 25.87b, 22.35b, 22.28b and 18.85a; m/z $324\left(3.2 \%, \mathrm{M}^{+}\right), 226\left(100, \mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right)$, $194\left(33, \mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right.$ and MeOH$)$ and 140 (54, MeO$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SH}$) (Found: M^{+}, 324.1739. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}$ requires M , 324.1759)
(2RS,3RS)-3-(Cyclohex-1'-enyl)-3-(4"-methoxyphenylsulfanyl)-2-methylpropanol 25
By a method similar to that for 20, lithium aluminium hydride $(95 \%, 98.7 \mathrm{mg}, 2.47 \mathrm{mmol})$ and the ester $19(806.2$ $\mathrm{mg}, 2.51 \mathrm{mmol})$ were stirred in dry ether $\left(12.5 \mathrm{~cm}^{3}\right)$ for 6 h with the temperature of the mixture rising from $0^{\circ} \mathrm{C}$ to RT . After being quenched, work-up of the mixture followed by flash column chromatographic separation on silica (84 g) with dichloromethane-methanol ($50: 1$) as eluent gave the alcohol 25 ($701.4 \mathrm{mg}, 96 \%$) as an oil; $R_{\mathrm{F}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(50: 1)\right]$ $0.43 ; \nu_{\max }(\mathrm{smear}) / \mathrm{cm}^{-1} 3390(\mathrm{OH}), 3050(=\mathrm{CH}), 3000-2800$ (CH), 1595 (Ar), 1575 (Ar), 1495 (Ar), 850 (para disubstituted benzene) and $800(\mathrm{C}=\mathrm{CH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.28(2 \mathrm{H}, \mathrm{d}$, $J 8.8$, ArH), $6.79(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 5.03(1 \mathrm{H}$, br s, $=\mathrm{CH}), 3.81\left(2 \mathrm{H}\right.$, secondary ABX system, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.78$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}$), 3.23 ($1 \mathrm{H}, \mathrm{d}, J 10.7$, CHS), $2.28[1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ 17.5, $\left(\mathrm{CH}_{2}\right)_{4}$], $1.97-1.41\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{\mathrm{x}} \mathrm{Me}\right)$ and $0.92(3$ $\left.\mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH}_{\mathrm{x}}\right) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.43 \mathrm{~b}, 136.19 \mathrm{a}$, 134.66b, 128.22a, 125.59b, 113.99a, 66.67b, 63.01a, 55.24a, 38.98a, 25.20b, 23.71b, 22.70b, 22.51b and 16.13a; m/z 292 (26, M^{+}) and 140 ($100, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$) (Found: M^{+}, 292.1510. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 292.1497$).
(1 RS,2RS)-3-Benzyloxy-1-[1'-(phenylsulfanyl)cyclohexyl]-2-methylpropan-1-ol 27 and (1 RS,2RS)-3-benzyloxy-3-[1'-(phenylsulfanyl)cyclohexyl]-2-methylpropan-1-ol 28 Sodium hydride (60% dispersion in oil; $60.5 \mathrm{mg}, 1.51 \mathrm{mmol}$) was added to a stirred solution of the diol $26(370.7 \mathrm{mg}, 1.32 \mathrm{mmol})$ in dry THF $\left(7.3 \mathrm{~cm}^{3}\right)$, under argon, at $4^{\circ} \mathrm{C}$; the temperature of the mixture was allowed to rise to RT. After 30 min tetrabutylammonium iodide ($98 \% ; 5.1 \mathrm{mg}, 13.9 \mu \mathrm{~mol}$) was added to the mixture and followed after 4 min by benzyl bromide ($165 \mathrm{~mm}^{3}, 1.39 \mathrm{mmol}$); the mixture was then stirred for a further 1 h 50 min . After this the reaction was quenched by addition of saturated aqueous ammonium chloride $\left(25 \mathrm{~cm}^{3}\right)$ to the mixture which was then extracted with diethyl ether $(3 \times 25$ $\left.\mathrm{cm}^{3}\right)$. The combined extracts were then dried $\left(\mathrm{MgSo}_{4}\right)$ and evaporated under reduced pressure. The residue was separated by flash column chromatography on silica (66 g) eluting with dichloromethane to give secondary alcohol 27 ($252.5 \mathrm{mg}, 52 \%$) as needles, $\mathrm{mp} 53-55.5^{\circ} \mathrm{C} ; R_{\mathrm{F}}$ [dichloromethane-methanol (100:1)] 0.58; $v_{\max }$ (Nujol mull)/ $\mathrm{cm}^{-1} 3440(\mathrm{OH}), 3080-3040$ $(\mathrm{PhH}), 1585(\mathrm{Ph}), 1575(\mathrm{Ph})$ and $1500(\mathrm{Ph}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.51(2 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 7.36-7.23$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and PhS), $4.52\left(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.49\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)$, $3.66\left(2 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{CH}_{2} \mathrm{OBz}\right), 3.61^{*}(1 \mathrm{H}, \mathrm{s}$ br, OH$), 3.31(1 \mathrm{H}, \mathrm{d}$ br , sharpened by $\mathrm{D}_{2} \mathrm{O}$ shake, $\left.J 2.8, \mathrm{CHOH}\right), 2.33(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHMe}), 1.99-1.17\left[10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.12(3 \mathrm{H}, \mathrm{d}, J 7.0$, $\mathrm{Me}) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.14 \mathrm{~b}, 137.11 \mathrm{a}, 130.9 \mathrm{lb}, 128.68 \mathrm{a}$, 128.66a, 128.37a, 127.73a, 127.63a, 79.31a, 73.63b, 73.35b, 61.56b, 33.78a, 30.74b, 25.93b, 22.03b, 21.92b and 19.45a; m / z $370\left(0.17, \mathrm{M}^{+}\right), 261$ (1.4, $\left.\mathrm{M}^{+}-\mathrm{PhS}\right), 243\left(4.6, \mathrm{M}^{+}-\mathrm{PhS}\right.$ and $\mathrm{H}_{2} \mathrm{O}$), $225\left(2.5, \mathrm{M}^{+}-\mathrm{PhS}\right.$ and $\left.2 \times \mathrm{H}_{2} \mathrm{O}\right), 191\left(27, \mathrm{PhSC}_{6} \mathrm{H}_{10}\right)$ and 91 ($100, \mathrm{PhCH}_{2}$) (Found: C, $74.75 ; \mathrm{H}, 8.2 ; \mathrm{S}, 8.8 \% ; \mathrm{M}^{+}$, 370.1999. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2}$ S requires C, $74.55 ; \mathrm{H}, 8.16 ; \mathrm{S}, 8.65 \%$; M, 370.1966); and the primary alcohol 28 ($77.1 \mathrm{mg}, 16 \%$) as an oil; $R_{\mathrm{F}}\left[\right.$ dichloromethane-methanol (100:1)] $0.29 ; \nu_{\text {max }}(\mathrm{smear}) / \mathrm{cm}^{-1}$ $3420(\mathrm{OH}), 3060(\mathrm{PhH}), 3040(\mathrm{PhH}), 1670,1580(\mathrm{Ph})$ and $1500(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 7.58-7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{SPh})$, 7.36-7.23 (8 H, m, Ph and SPh$), 4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.82(1$ $\mathrm{H}, \mathrm{dd}, J 4.3$ and 11.4, $\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OH}$), 3.73 ($1 \mathrm{H}, \mathrm{dd}, J 6.0$ and $\left.11.4, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 3.38\left(1 \mathrm{H}, \mathrm{d}, J 2.8, \mathrm{CHOCH}_{2} \mathrm{Ph}\right), 2.59(1$ $\mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me})$, 2.35* ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), 2.03-1.38 [9 H, m, $\left.\left(\mathrm{CH}_{2}\right)_{5}\right], 1.25\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.16(3 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{Me})$; $\delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.74 \mathrm{~b}, 136.85 \mathrm{a}, 131.99 \mathrm{~b}, 128.55 \mathrm{a}$, 128.49a, 128.40a, 127.90a, 127.81a, 90.99a, 66.04b, 59.83b, 35.79a, 32.08b, 31.54b, 25.75b, 21.82b and 19.49a; m/z 370 $\left(0.15, \mathrm{M}^{+}\right), 311\left(0.21, \mathrm{M}^{+}-\mathrm{HOCH}_{2} \mathrm{CH}(\mathrm{Me})\right.$; only possible for this regioisomer), 261 (1.3, $\mathrm{M}^{+}-\mathrm{PhS}$), 201 [2.5, $\mathrm{M}^{+}-$ $\mathrm{HOCH}_{2} \mathrm{CH}(\mathrm{Me})$ and PhSH$], 191$ (52, $\mathrm{PhSC}_{6} \mathrm{H}_{10}$) and 91 (100, PhCH_{2}) (Found: $\mathrm{M}, 370.1950 . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 370.1966)$.

(2RS,3SR)-2,6-Dimethylphenyl 3-hydroxy-3-[1-(4-methoxy-phenylsulfanyl)cyclohexyf]-2-methylpropionate 29

With similar conditions to those used in the synthesis of the diol 30 below, but with isolation of the aldol by chromatography on silica eluting with hexane-ether gave aldol $29(30 \%)$ as cubes, $\mathrm{mp} 98-99^{\circ} \mathrm{C} ; R_{\mathrm{F}}$ (dichloromethane) $0.16 ; v_{\max }\left(\right.$ Nujol mull) $/ \mathrm{cm}^{-1}$ $3470(\operatorname{sharp}, \mathrm{OH}), 1725(\mathrm{C}=\mathrm{O}), 1595(\mathrm{Ar})$ and $1495(\mathrm{Ar}) ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 7.42 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{SAr}$), 7.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 6.85 (2 $\mathrm{H}, \mathrm{d}, J 8.8, \mathrm{SAr}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.77(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and 2.5 , $\mathrm{CHOH}), 3.36(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{OH}), 2.19\left(6 \mathrm{H}, \mathrm{s}, M e_{2} \mathrm{Ar}\right), 2.10-$ $1.45\left[10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{C} H \mathrm{Me}\right], 1.57(3 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{CH} M e)$ and $1.30-1.10\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{C} H \mathrm{Me}\right] ; \delta_{\mathrm{C}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 175.20b, 160.41b, 147.69b, 138.56a, 130.25b, 128.79a, 126.04a, $121.09 \mathrm{~b}, 114.40 \mathrm{a}, 79.01 \mathrm{a}, 59.57 \mathrm{~b}, 55.32 \mathrm{a}, ~ 37.91 \mathrm{a}, ~ 30.39 \mathrm{~b}$, 30.18b, 25.85b, 21.79b, 21.69b, 18.88a and 16.76a; m/z 428 $\left(0.6 \%, \mathrm{M}^{+}\right), 289\left(9, \mathrm{M}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right), 271$ (16, M $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{O}$), $221\left(24, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SC}_{6} \mathrm{H}_{10}\right.$), 149 (26, $\mathrm{M}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}, \quad \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OH}$), 140 (100 , $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$) and 122 ($67, \mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OH}$) (Found: M^{+}, 428.2010. $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~S}$ requires $M, 428.2022$).

(1RS,2RS)-1-[1-(4-Methoxyphenylsulfanyl)cyclohexyl]-2-methylpropane-1,3-diol 30

2,6-Dimethylphenyl propionate ($102.1 \mathrm{mg}, 0.572 \mathrm{mmol}$) in dry THF ($1.0 \mathrm{~cm}^{3}$) was added over 8 min to a stirred solution of LDA [made from butyl lithium ($1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $0.400 \mathrm{~cm}^{3}, 0.6 \mathrm{mmol}$) and diisopropylamine ($84 \mathrm{~mm}^{3}$, $0.599 \mathrm{mmol})$] in dry THF ($2.6 \mathrm{~cm}^{3}$), under argon, and cooled in a solid CO_{2}-acetone bath. Stirring was continued at $<-72^{\circ} \mathrm{C}$ for 22 min after which a solution of the aldehyde $11(137.1 \mathrm{mg}$, 0.548 mmol) in dry THF ($1.0 \mathrm{~cm}^{3}$) was added to the mixture over 5 min . After a further 8 min , the reaction was quenched by addition of saturated aqueous ammonium chloride $\left(100 \mathrm{~cm}^{3}\right)$ to the mixture which was then allowed to warm to RT. Aqueous hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution; $15 \mathrm{~cm}^{3}$) was then added to the mixture after which it was extracted with diethyl ether (20 cm^{3}) and then dichloromethane ($20 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residual mixture was dissolved in dry THF (2.8 cm^{3}) and lithium aluminium hydride ($95 \% ; 22.8 \mathrm{mg}, 0.570$ mmol) was added to the solution which was then stirred for 1 h 45 min before being quenched and worked up as for the alcohol 20. The mixture was separated by flash column chromatography on silica to yield the anti diol $30(78.8 \mathrm{mg}, 46 \%$) as prisms, $\mathrm{mp} 67-68{ }^{\circ} \mathrm{C} ; \nu_{\max }(\mathrm{Nujol}$ mull $) / \mathrm{cm}^{-1} 3340(\mathrm{OH}), 3190(\mathrm{OH})$, 1595 (Ar), 1570 (Ar), 1495 (Ar) and 830 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.39(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH})$, $6.85(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}$), 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}$), $3.67(1 \mathrm{H}, \mathrm{dd}$, $J 3.9$ and $\left.11.3, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 3.64(1 \mathrm{H}, \mathrm{dd}, J 6.3$ and 11.3, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 3.17(1 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{CHOH}), 2.09-1.93(2 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH}_{\text {eq. }}$), $1.85-1.48\left(5 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{e q}, 2 \times \mathrm{CH}_{a x}\right.$. $), 1.41-$ $1.08\left(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{e q}\right)$ and $0.86(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{MeCH}) ; \delta_{\mathrm{C}}(400$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 160.56b, 138.54a, 120.16b, 114.54a, 79.02a, 66.69b, 62.65b, 55.34a, 34.58a, 30.02b, 28.79b, 26.30b, 21.87b, 21.68 b and $18.57 \mathrm{a} ; \mathrm{m} / \mathrm{z} 310\left(0.48 \%, \mathrm{M}^{+}\right), 221\left[5.5, \mathrm{M}^{+}-\right.$ $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{OH}\right], 140\left(61, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}\right), 86$ (68) and 84 (100) (Found: C, 65.9; H, 8.6; S, 10.5%; M $^{+}, 310.1601$. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 65.77 ; \mathrm{H}, 8.44 ; \mathrm{S}, 10.33 \% ; M, 310.1603$).

(2RS,3RS)-3-Methoxy-1-[1'-(4"-methoxyphenylsulfanyl)-cyclohexyl]-2-methylpropan-1-ol 31

In the way as for the alcohol 23, the anti diol $\mathbf{3 0}(31.2 \mathrm{mg}, 0.100$ mmol) gave anti alcohol $31(19.6 \mathrm{mg}, 60 \%)$ as an oil after flash column chromatography on silica with hexane-ethyl acetate (6:1) as eluent; R_{F} [hexane-ethyl acetate (4:1)] 0.35; $v_{\text {max }}$ (smear) $/ \mathrm{cm}^{-1} 3381(\mathrm{OH}), 1592(\mathrm{Ar}), 1569(\mathrm{Ar}), 1492(\mathrm{Ar})$ and 826 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $7.42(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}), 6.83(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}), 3.79(3 \mathrm{H}, \mathrm{s}$, $M e \mathrm{OAr}), 3.57(1 \mathrm{H}, \mathrm{d}, J 4.2, \mathrm{CHOH}), 3.57(1 \mathrm{H}$, dd, $J 4.3$ and obscured 9.3, $\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OMe}$), $3.51(1 \mathrm{H}$, dd, $J 5.7$ and 9.3 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OMe}\right), 3.33(3 \mathrm{H}, \mathrm{s}, \mathrm{MeOCH} 2), 3.26(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $2.25(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 1.94-1.47\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right], 1.40-1.32[1$ $\left.\mathrm{H}, \mathrm{brd}, J 8.6,\left(\mathrm{CH}_{2}\right)_{5}\right], 1.28-1.16\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right]$ and $1.08(3$ $\mathrm{H}, \mathrm{d}, J 7.1, \mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 160.19 \mathrm{~b}, 138.58 \mathrm{a}$, $121.31 \mathrm{~b}, 114.19 \mathrm{a}, 78.93 \mathrm{a}, 76.07 \mathrm{~b}, 61.11 \mathrm{~b}, 58.9 \mathrm{a}$, 55.26 a , 33.57a, 30.52b, 30.41b, 25.97b, 22.03b, 21.92b and 19.32a; m / z $324\left(0.7 \%, \mathrm{M}^{+}\right), 221\left[15, \mathrm{M}^{+}-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{OMe}\right]$, $167\left(15, \mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right), 140\left(52, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}\right)$, 86 (65) and 84 (100) (Found: M^{+}, 324.1755. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 324.1760$).

2-(4-Methoxyphenylsulfanyl)-2-methyl-5-phenylpentanal 32

Sulfuryl chloride ($97 \% ; 0.93 \mathrm{~cm}^{3}, 11.2 \mathrm{mmol}$) was added to a stirred solution of the disulfide $37(3.14 \mathrm{~g}, 11.3 \mathrm{mmol})$ in dry THF, with light excluded, under argon, and stirring continued at RT for 1 h 20 min . After being cooled in an ice-bath, this solution was added to a stirred solution of the silyl enol ethers $35(5.60 \mathrm{~g}, 22.5 \mathrm{mmol})$ in dry dichloromethane ($12 \mathrm{~cm}^{3}$) under argon, cooled in a solid CO_{2}-acetone bath, over 8 min . The resulting solution was allowed to warm to RT over 4 h after which it was evaporated under reduced pressure. The residue
was separated by flash column chromatography on silica (268 g) eluting with hexane-ethyl acetate ($12: 1-10: 1$) to yield the α thioaldehyde $32\left(6.56 \mathrm{~g}, 93 \%\right.$) as needles, $48.5-51.5^{\circ} \mathrm{C}$ (from hexane-ethyl acetate); $R_{\mathrm{F}}[$ hexane-ethyl acetate (12:1)] 0.23 ; $v_{\text {max }}$ (Nujol mull)/ $/ \mathrm{cm}^{-1} 1715$ (C=O), 1590 (Ar), 1495 (Ar), 830 (para disubstituted benzene) and 755 and 700 (monosubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.32-7.15(7$ $\mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and 2 of $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 6.79\left(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeOAr}$), 2.71-2.52 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), 1.97-1.47 (4 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CS}$) and $1.21(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCS}) ; \delta_{\mathrm{c}}(400 \mathrm{MHz}$; CDCl_{3}) $194.97 \mathrm{a}, 160.83 \mathrm{~b}, 141.58 \mathrm{~b}, 138.69 \mathrm{a}, 128.38 \mathrm{a}, 125.95 \mathrm{a}$, 119.90 b, 114.48a, 59.32b, 55.24a, 35.99b, 33.17b, 26.13b and $17.55 \mathrm{a} ; \mathrm{m} / \mathrm{z} 314\left(30 \%, \mathrm{M}^{+}\right)$, 145 ($100, \mathrm{M}-\mathrm{HCO}$ and $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}\right), \quad 140 \quad\left(98, \quad \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}\right)$ and 139 (59, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}$) (Found: C, 72.7; H, 7.0; S, 10.35%; M^{+}, 314.1344. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 72.58 ; \mathrm{H}, 7.05 ; \mathrm{S}, 10.20 \% ; M, 314.1341$).

2-Methyl-5-phenylpentanal 34

A solution of the imine $33(16.0 \mathrm{~g}, 0.116 \mathrm{~mol})$ in dry diethyl ether $\left(110 \mathrm{~cm}^{3}\right)$ was added over 1 h 10 min to a stirred solution of freshly made lithium diisopropylamide (0.116 mol), in hexane-diethyl ether $\left(77.5 \mathrm{~cm}^{3}, 100 \mathrm{~cm}^{3}\right)$ at $0-5^{\circ} \mathrm{C}$. After 26 min , a solution of 1-bromo-3-phenylpropane ($18.0 \mathrm{~cm}^{3}, 98 \%$, $0.116 \mathrm{~mol})$ in diethyl ether ($110 \mathrm{~cm}^{3}$) was added to the mixture over 18 min . The cooling bath was removed and the mixture stirred at RT for 65 h . The reaction was quenched by addition of aqueous hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 350 \mathrm{~cm}^{3}$) to the mixture and heating under reflux for 2 h , under argon. After the mixture had cooled to RT, the aqueous layer was separated from the diethyl ether layer and extracted with diethyl ether ($3 \times 250 \mathrm{~cm}^{3}$). The combined diethyl ether solution extracts were washed with a mixture of brine ($75 \mathrm{~cm}^{3}$) and saturated aqueous sodium hydrogen carbonate $\left(25 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was distilled with a few crystals of quinol to give the aldehyde ${ }^{29} 34$ ($10.01,49 \%$) as an oil, bp $76-86^{\circ} \mathrm{C}$ at $2.5-3.0 \mathrm{mmHg} ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.60(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{CHO}), 7.31-7.15(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $\left.2.63(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{PhCH})_{2}\right), 2.35(1 \mathrm{H}$, dsextet, $J 1.9$ and 6.8 , $\mathrm{C} H \mathrm{Me}), 1.82-1.60\left[3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right], 1.47-1.33[1 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{2}\right]$ and $1.09(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me})$.

2-Methyl-5-phenyl-1-trimethylsiloxypentene 35

The aldehyde $34(9.58 \mathrm{~g}, 54.3 \mathrm{mmol})$ was added to a stirred solution of trimethylsilyl chloride ($8.3 \mathrm{~cm}^{3}, 65.4 \mathrm{mmol}$) and triethylamine ($18 \mathrm{~cm}^{3}, 0.129 \mathrm{~mol}$) in dry DMF ($35 \mathrm{~cm}^{3}$) at RT and washed in with more DMF ($5 \mathrm{~cm}^{3}$). The mixture was heated to $80^{\circ} \mathrm{C}$, stirred for 22 h , and then allowed to cool to RT. Light petroleum (bp $30-40^{\circ} \mathrm{C}$) $\left(250 \mathrm{~cm}^{3}\right.$) was added to the mixture which was then washed with cool $\left(5^{\circ} \mathrm{C}\right)$ aqueous hydrochloric acid ($3 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 2 \times 40 \mathrm{~cm}^{3}$), cool, saturated aqueous sodium hydrogen carbonate ($50 \mathrm{~cm}^{3}$) and finally cool brine ($50 \mathrm{~cm}^{3}$). After being dried $\left(\mathrm{MgSO}_{4}\right)$, the mixture was evaporated under reduced pressure and the residue distilled in vacuo to give the silyl enol ethers $35(9.05 \mathrm{~g}, 67 \%)$ as a cis (A) and trans (B) ($37: 63$) mixture as an oil, bp $102^{\circ} \mathrm{C}$ at 0.5 $\mathrm{mmHg} ; v_{\max }$ (smear)/ $\mathrm{cm}^{-1} 3100(\mathrm{HC}=), 3070(\mathrm{HC=}=3040(\mathrm{PhH})$, $2960-2850(\mathrm{CH}), 1675(\mathrm{C}=\mathrm{C}), 1605(\mathrm{Ph}), 1500(\mathrm{Ph}), 1255(\mathrm{Si}-$ Me), 880 ($\mathrm{R}_{2} \mathrm{C}=\mathrm{CH}$, unusually high), $840\left(\mathrm{SiMe}_{3}\right)$ and 750 and 700 (monosubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.31-$ $7.14\left(5 \mathrm{H}^{\mathrm{A}}\right.$ and $\left.5 \mathrm{H}^{\mathrm{B}}, \mathrm{m}, \mathrm{PhH}\right), 6.05\left(1 \mathrm{H}^{\mathrm{A}}\right.$ and $\left.1 \mathrm{H}^{\mathrm{B}}, \mathrm{s}, \mathrm{CH}=\right)$, $2.60\left(2 \mathrm{H}^{\mathrm{A}}\right.$, unsymmetric $\left.\mathrm{t}, J 7.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.57\left(2 \mathrm{H}^{\mathrm{B}}\right.$, unsymmetric $\left.\mathrm{t}, J 7.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.14\left(2 \mathrm{H}^{\mathrm{A}}\right.$, unsymmetric $\mathrm{t}, J 7.6$, $\mathrm{CH}_{2} \mathrm{C}=$), 1.93 ($2 \mathrm{H}^{\mathrm{B}}$, unsymmetric $\mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{C}=$), 1.76-1.63 (2 H^{A} and $\left.2 \mathrm{H}^{\mathrm{B}}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.59\left(3 \mathrm{H}^{\mathrm{B}}, \mathrm{d}, J 1.3, \mathrm{MeC}=\right), 1.53$ $\left(3 \mathrm{H}^{\mathrm{A}}, \mathrm{d}, J 1.3, \mathrm{MeC}=\right.$), $0.17\left[9 \mathrm{H}^{\mathrm{B}}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right]$ and $0.16\left[9 \mathrm{H}^{\mathrm{A}}, \mathrm{s}\right.$, $\left.\mathrm{Me}_{3} \mathrm{Si}\right] ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 142.97 \mathrm{~d}^{\mathrm{A}}, 142.68 \mathrm{~b}^{\mathrm{B}}, 133.61 \mathrm{a}^{\mathrm{B}}$, $133.22 \mathrm{a}^{\mathrm{A}}, \quad 128.45 \mathrm{a}^{\mathrm{A}} \mathrm{and}^{\mathrm{B}}, \quad 128.25 \mathrm{a}^{\mathrm{B}}, \quad 128.19 \mathrm{a}^{\mathrm{A}}, \quad 125.61 \mathrm{a}^{\mathrm{B}}$, $125.52 \mathrm{a}^{\mathrm{A}}, \quad 117.75 \mathrm{~b}^{\mathrm{B}}, 117.40 \mathrm{~b}^{\mathrm{A}}, 35.73 \mathrm{~b}^{\mathrm{A}}, 35.34 \mathrm{~b}^{\mathrm{B}}, 33.40 \mathrm{~b}^{\mathrm{B}}$, $29.74 \mathrm{~b}^{\mathrm{B}}, 29.20 \mathrm{~b}^{\mathrm{A}}, 28.29 \mathrm{~b}^{\mathrm{A}}, 17.02 \mathrm{a}^{\mathrm{A}}$ and $12.58 \mathrm{a}^{\mathrm{B}}$ (the last two signals identify A and B as cis and trans respectively ${ }^{30}$); $m / z 248$
$\left(11, \mathrm{M}^{+}\right), 143\left(37, \mathrm{M}-\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right)$ and 73 ($100, \mathrm{Me}_{3} \mathrm{Si}$) (Found: M^{+}, 248.1610. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{OSi}$ requires $M, 248.1596$).

Bis(4-methoxyphenyl) disulfide 37

Aqueous potassium hydroxide ($>85 \% ; 3.63 \mathrm{~g}, 55-65 \mathrm{mmol}$) and potassium ferricyanide $(98 \% ; 20.9 \mathrm{~g}, 62 \mathrm{mmol})$ in water ($75 \mathrm{~cm}^{3}$) was added to a rapidly stirred emulsion of 4 methoxybenzenethiol ($97 \%, 4.47 \mathrm{~g}, 30.9 \mathrm{mmol}$) in water over 50 min . The mixture, which went from yellow via green to blackdark green, was then extracted with ethyl acetate ($100 \mathrm{~cm}^{3}$), further diluted (to $250 \mathrm{~cm}^{3}$) with water and then extracted with more ethyl acetate $\left(2 \times 200 \mathrm{~cm}^{3}\right)$. The combined blackgreen extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure and then filtered through silica eluting with dichloromethane. Flash column chromatography of the residue on silica (192 g) with hexane-ethyl acetate ($8: 1$) yielded the disulfide ${ }^{31} 37(4.01 \mathrm{~g}, 93 \%)$ as plates, $\mathrm{mp} 36-37^{\circ} \mathrm{C}$; $R_{\mathrm{F}}\left[\right.$ hexane-ethyl acetate (8:1)] 0.24; $v_{\max }$ (Nujol mull) $/ \mathrm{cm}^{-1}$ $1590(\mathrm{Ar}), 1575(\mathrm{Ar})$ and $1495(\mathrm{Ar}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.39$ $\left(4 \mathrm{H}, \mathrm{d}, J 8.8\right.$, meta protons of $\left.2 \times \mathrm{MeOC}_{6} \mathrm{H}_{4}\right), 6.83(4 \mathrm{H}, \mathrm{d}, J$ 8.8 , ortho protons of $2 \times \mathrm{MeOC}_{6} \mathrm{H}_{4}$) and $3.79(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{MeO}) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.9 \mathrm{lb}, 132.67 \mathrm{a}, 128.42 \mathrm{~b}$, 114.61a and 55.36a; $m / z \quad 278\left(29 \%, \mathbf{M}^{+}\right), 140$ (67, $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}\right), 139\left(100, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right)$ and $125\left(41, \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right)$ (Found: $\mathrm{M}^{+}, 278.0431 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $M, 278.0435$).

(2RS,3SR,4RS and 4SR) 2',6'-Dimethylphenyl 3-hydroxy-4($4^{\prime \prime}$-methoxyphenylsulfanyl)-2,4-dimethyl-7-phenylheptanoate 38, 39

A solution of the aldehyde $32(2.0 \mathrm{~g}, 6.36 \mathrm{mmol})$ in dry THF (10 cm^{3}) was added over 10 min to a solution of the lithium enolate of 2,6-dimethylphenyl propionate (freshly prepared) in THFhexane ($40 \mathrm{~cm}^{3}, 4.3 \mathrm{~cm}^{3}$), under argon, and cooled in a solid CO_{2}-acetone bath, with the temperature maintained $<-65^{\circ} \mathrm{C}$. After 11 min , the reaction was quenched by addition of aqueous hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 30 \mathrm{~cm}^{3}$) to the mixture which was then allowed to warm to RT when it was extracted with diethyl ether ($3 \times 100 \mathrm{~cm}^{3}$). The combined extracts were washed with saturated aqueous sodium hydrogen carbonate ($30 \mathrm{~cm}^{3}$) and brine ($30 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. Flash column chromatography of the residue on silica (270 g) of 99.2% of the mixture, eluting with hexane-diethyl ether ($4: 1$), gave pure anti,anti (2RS,3SR,4RS)-aldol 38 ($0.95 \mathrm{~g}, 30 \%$) as plates, $\mathrm{mp} 98-99^{\circ} \mathrm{C}$ (ethyl acetate-hexane); $\quad R_{\mathrm{F}}$ (dichloromethane) 0.27 and $R_{\mathrm{F}}\left[\right.$ hexane-diethyl ether (4:1)] $0.22 ; v_{\text {max }}$ (Nujol mull) $/ \mathrm{cm}^{-1}$ 3520 (OH sharp), 1725 (C=O), $1590(\mathrm{Ar}), 1570(\mathrm{Ar})$ and 1495 (Ar); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.33-7.17(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and protons ortho to S in $\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{OMe}$), $7.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right), 6.79(2 \mathrm{H}$, d, $J 8.7$, protons meta to S in $\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{OMe}$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO})$, $3.55(1 \mathrm{H}, \mathrm{dq}, J 2.9$ and $7.3, \mathrm{C} H \mathrm{Me}), 3.48(1 \mathrm{H}, \mathrm{d}, J 2.9$, $\mathrm{CHOH}), 2.62\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.18\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right)$, 2.12-1.62 (4 H, m, CH2CS, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.55(3 \mathrm{H}, \mathrm{d}, J 7.3$, $\mathrm{CHMe})$ and $1.14(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCS}) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.07 \mathrm{~b}$, 160.46b, 147.67b, 142.39b, 138.64a, 130.23b, 128.79a, 128.60a, 128.34a, 126.07a, 125.77a, 121.11b, 114.32a, 78.68a, 57.91b, $55.30 \mathrm{a}, 38.73 \mathrm{a}, 36.20 \mathrm{~b}, 35.75 \mathrm{~b}, 26.19 \mathrm{~b}, 21.84 \mathrm{a}, 18.70 \mathrm{a}$ and 16.74a; m/z 370 ($7.1 \%, \mathrm{M}^{+}-\mathrm{HOC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}$), 353 ($\mathrm{M}-$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right), 285$ [9.5, $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{Me}^{2} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right], 140$ ($92, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$), 122 ($82, \mathrm{HOC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}$) and 91 (100 , PhCH_{2}) (Found: C, $73.3 ; \mathrm{H}, 7.4 ; \mathrm{S}, 6.7 \%$; $\mathrm{M}^{+}-\mathrm{HOC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}$, 370.1595. $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~S}$ requires C, 73.14; $\mathrm{H}, 7.37$; S, 6.51%; $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 370.1603$). The mixed fractions of the aldols 38 and 39 were rechromatographed to remove a lower running impurity, eluted with dichloromethane, to give a ($52: 44: 5$) mixture of the aldol 38, anti,syn (2RS,3SR,4SR)aldol 39 ($0.91 \mathrm{~g}, 29 \%$), and one of the 2,3 syn isomers, as crystals. The NMR spectra of anti,syn ($2 R S, 3 S R, 4 S R$) aldol 39 could be derived from those of the mixture; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.36 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArS}$), $7.33-7.17(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.05(3 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{Me}_{2} \mathrm{C}_{6} H_{3}\right), 6.81(2 \mathrm{H}, \mathrm{d}, J 8.7$, ArS), $4.09(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{OH})$, 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}$), $3.51-3.45$ (1 H , obscured, CHOH), 3.37 (1 H , dq, $J 3.7$ and $7.2, \mathrm{C} H \mathrm{Me}), 2.67-2.51(2 \mathrm{H}$, obscured, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 2.19\left(6 \mathrm{H}, \mathrm{s}, \mathrm{MeC}_{6} \mathrm{H}_{3}\right), 2.09-1.32\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right]$ and $1.51\left(3 \mathrm{H}, \mathrm{d}, J 7.7\right.$, 1 peak coincident with Me of 38); $\delta_{\mathrm{C}}(400$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 174.18b, 160.50b, 147.84b, 142.17b, 138.72a, 130.29b, 128.73a, 128.44a, 128.40a, 125.99a, 125.89a, 121.12b (coincident with peak of 38), 114.33a (coincident with peak of 38), 78.75a, $58.53 \mathrm{~b}, 55.31 \mathrm{a}$ (coincident with peak of 38), 39.62a, 36.29b, 35.66b, 26.53b, 21.41a, 18.65a and 16.79a; m/z 492 $\left(0.19 \%, \mathbf{M}^{+}\right), 370\left(10, \mathrm{M}-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OH}\right), 180(41), 140$ (74, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$), 122 ($100, \mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OH}$) and 91 (74, PhCH_{2}) (Found: $\mathrm{M}^{+}, 492.2349 . \mathrm{C}_{30} \mathrm{H}_{36} \mathrm{SO}_{4}$ requires $M, 492.2334$).

(2RS,3RS,4SR)-4-(4-Methoxyphenylsulfanyl)-2,4-methyl-7-phenylheptane-1,3-diol 41

In the same way as for alcohol $\mathbf{2 0}$, lithium aluminium hydride ($95 \% ; 43.9 \mathrm{mg}, 1.10 \mathrm{mmol}$) and the ester $38(547.7 \mathrm{mg}, 1.11$ mmol) in dry THF ($5.6 \mathrm{~cm}^{3}$) were stirred at RT for 3.5 h . After being quenched and worked up the mixture was separated by flash column chromatography on silica eluting with dichloromethane-methanol ($50: 1$) to yield the anti, anti diol $41(269.7 \mathrm{mg}, \quad 65 \%)$ as a solid, $\mathrm{mp} 52.5-53{ }^{\circ} \mathrm{C}$; R_{F} [dichloromethane-methanol (50:1)] 0.23; $v_{\text {max }}$ (Nujol mull) $3390(\mathrm{OH}), 3090-3030(\mathrm{ArH}), 1595(\mathrm{Ar}), 1495(\mathrm{Ar})$ and 835 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.35(2 \mathrm{H}, \mathrm{d}$, $J 8.7, \mathrm{ArH}$), 7.33-7.16 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 6.84 ($2 \mathrm{H}, \mathrm{d}, J 8.7$, ArH), $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.69\left(1 \mathrm{H}, \mathrm{dd}, J 3.3\right.$ and 11.2, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right)$, $3.62\left(1 \mathrm{H}, \mathrm{dd}, J 6.3\right.$ and $\left.11.2, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.26(1 \mathrm{H}, \mathrm{d}, J 5.3$, $\mathrm{CHOH}), 2.62\left(2 \mathrm{H}, \mathrm{dd}, J 6.3\right.$ and 8.3, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 2.08-1.65(5 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CS}$ and CHMe$), 1.10(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCS})$ and $0.89(3 \mathrm{H}$, $\mathrm{d}, J 7.0, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 160.57 \mathrm{~b}, 142.22 \mathrm{~b}$, $138.78 \mathrm{a}, 128.45 \mathrm{a}, 128.37 \mathrm{a}, 125.84 \mathrm{a}, 120.29 \mathrm{~b}, 114.38 \mathrm{a}, 80.11 \mathrm{a}$, 67.00b, 59.87b, 55.33a, 36.52b, 34.79a, 33.78b, 26.64b, 23.04a and 18.22a; $m / z 374\left(0.7 \%, \mathrm{M}^{+}\right), 285\left[4.7, \mathrm{M}-\mathrm{HOCH}_{2} \mathrm{C}-\right.$ (Me)CHOH], $140\left(100, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}\right)$ and $91\left(45, \mathrm{PhCH}_{2}\right)$ (Found: $\mathrm{M}^{+}, 374.1939 . \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 374.1915$).

(2RS,3RS,4RS and 4SR)-4-(4-Methoxyphenylsulfanyl)-2,4-methyl-7-phenylheptane-1,3-diol 41, 42

In the same way, a 3.5-5.5:1 mixture of the alcohols 38 and 39 $(814.3 \mathrm{mg}, 1.65 \mathrm{mmol})$ was reduced with lithium aluminium hydride ($95 \% ; 132.6 \mathrm{mg}, 3.32 \mathrm{mmol}$) to give an inseparable 4.3:1 mixture of the anti,anti (2 RS, 3RS, 4 SR)-diol 41 (isomer A) and the anti,syn ($2 \mathrm{RS}, 3 \mathrm{RS}, 4 \mathrm{RS}$) diol 42 (isomer B) ($479.4 \mathrm{mg}, 63 \%$) as a gum; R_{F} [dichloromethane-methanol (50:1)] 0.23; $\delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.35\left(2 \mathrm{H}^{\mathrm{A}}, \mathrm{d}, J 8.8, \mathrm{ArH}\right), 7.32-7.19\left(5 \mathrm{H}^{\mathrm{A}}, 7 \mathrm{H}^{\mathrm{B}}\right.$, m, Ph and $\left.\mathrm{ArH}^{\mathrm{B}}\right), 6.84\left(2 \mathrm{H}^{\mathrm{A}}, \mathrm{d}, J 8.7, \mathrm{ArH}\right), 6.78\left(2 \mathrm{H}^{\mathrm{B}}, \mathrm{d}, J 8.8\right.$, $\mathrm{ArH}), 3.81\left(3 \mathrm{H}^{\mathrm{A} \text { and } \mathrm{B}}, \mathrm{s}, \mathrm{MeO}\right), 3.76-3.57\left(2 \mathrm{H}^{\mathrm{A} \text { and } \mathrm{B}}, \mathrm{m}\right.$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.26\left(1 \mathrm{H}^{\mathrm{A}}, \mathrm{d}, J 5.2, \mathrm{CHOH}\right), 3.15\left(1 \mathrm{H}^{\mathrm{B}}, \mathrm{d}, J 4.7\right.$, $\mathrm{CHOH}), 2.96\left(2 \mathrm{H}^{\mathrm{A} \text { and } \mathrm{B}}, \mathrm{s}, \mathrm{OH}\right), 2.70-2.50\left(2 \mathrm{H}^{\mathrm{A} \text { and } \mathrm{B}}, \mathrm{m}\right.$, $\mathrm{CH}_{2} \mathrm{Ph}$), 2.18-1.64 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{\text {A and }}{ }^{\mathrm{B}} \mathrm{CS}, \mathrm{CH}_{2}{ }^{\mathrm{A}} \mathrm{CH}_{2} \mathrm{CS}$ and $\left.\mathrm{C} H^{\mathrm{A}}{ }^{\text {and }} \mathrm{Me}\right), 1.46\left(1 \mathrm{H}^{\mathrm{B}}\right.$, unsymmetric dt, $J 4.8$ and $c a .13 .9$ and 12.1), $1.26-1.13\left(1 \mathrm{H}^{\mathrm{B}}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.17\left(3 \mathrm{H}^{\mathrm{B}}, \mathrm{s}, \mathrm{MeCS}\right), 1.10$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCS}$), $0.93\left(3 \mathrm{H}^{\mathrm{B}}, \mathrm{d}, J 7.1, \mathrm{C} H \mathrm{Me}\right)$ and $0.89(3 \mathrm{H}, \mathrm{d}, J$ $7.0, \mathrm{CHMe}) ; \delta_{\mathrm{c}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 160.58 \mathrm{~b}^{\mathrm{A}}, 160.47 \mathrm{~b}^{\mathrm{B}}$, $142.22 \mathrm{~b}^{\mathrm{A}}, \quad 142.10 \mathrm{a}^{\mathrm{B}}, \quad 138.77 \mathrm{a}^{\mathrm{A}}, \quad 138.27 \mathrm{a}^{\mathrm{B}}, \quad 128.54 \mathrm{a}^{\mathrm{B}}$, $128.44 \mathrm{a}^{\text {A and }}, 128.36 \mathrm{a}^{\mathrm{A}}, \quad 125.92 \mathrm{a}^{\mathrm{B}}, 125.84 \mathrm{a}^{\mathrm{A}}, 120.33 \mathrm{~b}^{\text {A and }}$ B, $114.45 \mathrm{a}^{\mathrm{B}}, \quad 114.38 \mathrm{a}^{\mathrm{A}}, \quad 80.13 \mathrm{a}^{\mathrm{A}}, \quad 78.68 \mathrm{a}^{\mathrm{B}}, \quad 66.98 \mathrm{~b}^{\mathrm{A}}, \quad 66.37 \mathrm{~b}^{\mathrm{B}}$, $61.31 \mathrm{~b}^{\mathrm{B}}, 59.89 \mathrm{~b}^{\mathrm{A}}, 55.32 \mathrm{a}^{\mathrm{A} \mathrm{and}^{\mathrm{B}}}, 36.52 \mathrm{~b}^{\mathrm{A}}, 36.07 \mathrm{~b}^{\mathrm{B}}, 34.82 \mathrm{a}^{\mathrm{A} \text { and }{ }^{\mathrm{B}}}$, $33.84 \mathrm{~b}^{\text {A and }}, 26.62 \mathrm{~b}^{\mathrm{A}}, 26.18 \mathrm{~b}^{\mathrm{B}}, \quad 23.04 \mathrm{a}^{\text {A and } \mathrm{B}}, 18.40 \mathrm{a}^{\mathrm{B}}$ and $18.22 \mathrm{a}^{\mathrm{A}} ; \mathrm{m} / \mathrm{z} 356\left(1.4 \%, \mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 283(3.5 \%, \mathrm{M}-$ $\left.\mathrm{PhCH}_{2}\right), 140\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}, 100\right)$ and 91 ($34, \mathrm{PhCH}_{2}$) (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 356.1790 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 356.1790$).

(2RS,3SR,4RS)-3-(4'-Methoxyphenylsulfany)-2,4-dimethyl-2-

 ($3^{\prime \prime}$-phenylpropyl)tetrahydrofuran 43In the same way as for 9 above, a solution of toluene- p-sulfonic acid monohydrate ($5.6 \mathrm{mg}, 29.2 \mu \mathrm{~mol}$) and the diol $41(41.6 \mathrm{mg}$, $0.111 \mathrm{mmol})$ in dry dichloromethane ($0.55 \mathrm{~cm}^{3}$) were heated under reflux for 1 h to give, after filtration, the anti,anti
tetrahydrofuran 43 ($36.9 \mathrm{mg}, 93 \%$); R_{F} (dichloromethane) 0.35 ; $v_{\text {max }}($ smear $) / \mathrm{cm}^{-1} 3080-3030(\mathrm{ArH}), 1595$ (Ar), 1575 (Ar), 1495 (Ar), 830 (para disubstituted benzene) and 750 and 700 (phenyl); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.39\left(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 7.29-7.07$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{PhH}$), 6.82 ($2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{C}_{6} H_{4} \mathrm{OMe}$), 3.96 ($1 \mathrm{H}, \mathrm{t}, J$ $\left.8.2, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.27(1 \mathrm{H}, \mathrm{t}, J 8.7$, $\mathrm{CH}_{\mathrm{A}} \mathrm{C} H_{\mathrm{B}}$), 2.74 ($1 \mathrm{H}, \mathrm{d}, J 10.7, \mathrm{CHS}$), 2.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), $2.28(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 1.72-1.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $1.21(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $1.09(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}) ; \delta_{\mathrm{C}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 159.41b, 142.48b, 135.23a, 128.38a, 128.2la, $126.00 \mathrm{~b}, 125.64 \mathrm{a}, 114.51 \mathrm{a}, 85.10 \mathrm{~b}, 71.66 \mathrm{~b}, 63.54 \mathrm{a}, 55.32 \mathrm{a}$, 40.34a, 39.92b, 36.30b, 25.64b, 22.70a and 16.16a; m/z 356 $\left(11 \%, \mathrm{M}^{+}\right), 194 \quad\left[100, \mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COMe}\right], 140(44$, $\mathrm{MeOC}_{6} \mathrm{H}_{6} \mathrm{SH}$), 135 (91) and 91 ($79, \mathrm{PhCH}_{2}$) (Found: M^{+}, 356.1788. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 356.1810$).

(3SR,4RS)-3-(4'-Methoxyphenylsulfanyl)-2,4-dimethyl-2-(3"phenylpropyl)tetrahydrofuran 43, 44

In the same way, a solution of toluene- p-sulfonic acid monohydrate ($8.2 \mathrm{mg}, 43.1 \mu \mathrm{~mol}$) and the diols 41 and 42 (77.8 $\mathrm{mg}, 0.208 \mathrm{mmol}$) in dry dichloromethane ($1.0 \mathrm{~cm}^{3}$) were heated under reflux for 24 min . Filtration of the mixture followed by flash column chromatography on silica (7 g) eluting with hexane-ethyl acetate (8:1) gave the anti,anti tetrahydrofuran 43 $(2.1 \mathrm{mg}, 3 \%)$ as an oil $\left\{R_{\mathrm{F}}[\right.$ hexane-ethyl acetate (4:1)] 0.40 , spectroscopically identical with sample 43 above\}, a 54:46 mixture of the tetrahydrofurans 43 and $44(28.4 \mathrm{mg}, 38 \%)$, and syn,anti (2SR,3SR,4RS)-tetrahydrofuran 44 ($2.3 \mathrm{mg}, 3 \%$) as an oil; $R_{\mathrm{F}}\left[\right.$ hexane-ethyl acetate (4:1)] $0.36 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.38 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$), 7.31-7.14 (5 H, m, PhH), 6.80 (2 $\left.\mathrm{H}, \mathrm{d}, J 8.8, \mathrm{C}_{6} H_{4} \mathrm{OMe}\right), 3.86\left(1 \mathrm{H}, \mathrm{t}, J 8.3, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.79(3 \mathrm{H}$, $\mathrm{s}, \mathrm{MeO}), 3.31\left(1 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{CH}_{\mathrm{A}} \mathrm{C} H_{\mathrm{B}}\right), 2.72(1 \mathrm{H}, \mathrm{d}, J 10.7$, CHS), $2.63\left(2 \mathrm{H}\right.$, unsymmetric $\left.\mathrm{t}, J 7.3, \mathrm{C} H_{2} \mathrm{Ph}\right), 2.24(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHMe}), 1.80-1.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.09(3 \mathrm{H}, \mathrm{d}$ partly obscured, $J 5.5, \mathrm{CHMe}$) and $1.08(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCS})$.

(2RS,3RS,4RS and 4SR)-1-Methoxy-4-(4'-methoxyphenyl-sulfanyl)-2,4-dimethyl-7-phenylheptan-3-ol 45, 46

In the same way as for alcohol 22, a (3.0:1) mixture of the 2,3 anti diols 41 and $42(801.6 \mathrm{mg}, 2.14 \mathrm{mmol})$ gave a ($3.4: 1$) diastereoisomeric mixture of the 3,4 anti ($2 \mathrm{RS}, 3 \mathrm{RS}, 4 \mathrm{SR}$)alcohol 45 (isomer A) and the $3,4 \operatorname{syn}$ (2RS,3RS,4RS)-alcohol 46 (isomer B) ($554.7 \mathrm{mg}, 67 \%$) as an oil after flash column chromatography on silica eluting with hexane-ethyl acetate (8:1); $R_{\mathrm{F}}\left[\right.$ hexane-ethyl acetate (4:1)] $0.25 ; v_{\text {max }}(\mathrm{smear}) / \mathrm{cm}^{-1}$ $3510(\mathrm{OH}), 1595(\mathrm{Ar}), 1570(\mathrm{Ar}), 1495(\mathrm{Ar})$ and 830 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.33\left(2 \mathrm{H}^{\text {A and } \mathrm{B}}\right)$, 7.29-7.18 ($\left.5 \mathrm{H}^{\mathrm{A} \text { and } \mathrm{B}}, \mathrm{m}, \mathrm{PhH}\right), 6.80\left(2 \mathrm{H}^{\mathrm{A}}, \mathrm{d}, J 8.7, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, $6.78\left(2 \mathrm{H}^{\mathrm{B}}, \mathrm{d}, J 8.7, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 3.80\left(3 \mathrm{H}^{\mathrm{A} \text { and } \mathrm{B}}, \mathrm{s}, \mathrm{MeOAr}\right)$, $3.55\left(1 \mathrm{H}^{\mathrm{A}}\right.$, dd, $J 5.0$ and $\left.9.3, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OM}\right)$, $3.51\left(2 \mathrm{H}^{\mathrm{B}}\right.$, obscured, $\left.\mathrm{CH}_{2} \mathrm{OMe}\right), 3.50\left(1 \mathrm{H}^{\mathrm{A}}\right.$, dd, $J 4.6$ and 9.3 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OMe}\right), 3.35\left(1 \mathrm{H}^{\mathrm{A}}, \mathrm{d}, J 3.6, \mathrm{CHOH}\right), 3.314\left(3 \mathrm{H}^{\mathrm{B}}, \mathrm{s}\right.$, $\left.M e \mathrm{OCH}_{2}\right), 3.306\left(3 \mathrm{H}^{\mathrm{A}}, \mathrm{s}, M e \mathrm{OCH}_{2}\right), 3.27\left(1 \mathrm{H}^{\mathrm{B}}, \mathrm{d}, J 3.4\right.$, $\mathrm{CHOH}), 2.20-1.48\left(5 \mathrm{H}^{\mathrm{A}}\right.$ and $3 \mathrm{H}^{\mathrm{B}}, \mathrm{m}, \mathrm{C} H \mathrm{Me}, \mathrm{CH}_{2} \mathrm{CS}$, $\left.\mathrm{PhCH}_{2} \mathrm{CH}_{2}{ }^{\mathrm{A}}\right), 1.36-1.25\left(2 \mathrm{H}^{\mathrm{B}}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}{ }^{\mathrm{B}}\right), 1.14\left(3 \mathrm{H}^{\mathrm{B}}, \mathrm{s}\right.$, MeCS), $1.12\left(3 \mathrm{H}^{\mathrm{A}}, \mathrm{s}, \mathrm{MeCS}\right), 1.08\left(3 \mathrm{H}^{\mathrm{A}}, \mathrm{d}, J 7.1, M e \mathrm{CH}\right)$ and $1.06\left(3 \mathrm{H}^{\mathrm{B}}, \mathrm{d}, \quad J 7.0, \mathrm{MeCH}\right) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $160.26 \mathrm{~b}^{\mathrm{A} \text { and } \mathrm{B}}, \quad 142.44 \mathrm{~b}^{\mathrm{A}}, \quad 142.34 \mathrm{~b}^{\mathrm{B}}, \quad 138.84 \mathrm{a}^{\mathrm{A}}, \quad 138.71 \mathrm{a}^{\mathrm{B}}$, $128.52 \mathrm{a}^{\mathrm{A}}, \quad 128.31 \mathrm{a}^{\mathrm{B}}, \quad 125.79 \mathrm{a}^{\mathrm{A}}, \quad 125.73 \mathrm{a}^{\mathrm{B}}, \quad 121.54 \mathrm{~b}^{\text {A and }}$ B, $114.16 \mathrm{a}^{\mathrm{B}}, \quad 114.11 \mathrm{a}^{\mathrm{A}}, \quad 79.44 \mathrm{a}^{\mathrm{A}}, \quad 78.74 \mathrm{a}^{\mathrm{B}}, \quad 76.08 \mathrm{~b}^{\mathrm{A}}, \quad 75.59 \mathrm{~b}^{\mathbf{B}}$, $59.81 \mathrm{~b}^{\mathrm{B}}, 58.89 \mathrm{a}^{\mathrm{A} \text { and } \mathrm{B}}, 58.75 \mathrm{~b}^{\mathrm{A}}, 55.28 \mathrm{a}^{\mathrm{A}}, 36.40 \mathrm{~b}^{\mathrm{A}}, 36.26 \mathrm{~b}^{\mathrm{B}}$, $36.13 \mathrm{~b}^{\mathrm{B}}, 35.93 \mathrm{~b}^{\mathrm{A}}, 34.03 \mathrm{a}^{\mathrm{B}}, 33.69 \mathrm{a}^{\mathrm{A}}, 26.4 \mathrm{lb}^{\mathrm{A}}$ and ${ }^{\mathrm{B}}, 22.64 \mathrm{a}^{\mathrm{A}}$, $20.49 \mathrm{a}^{\mathbf{B}}, 19.09 \mathrm{a}^{\mathbf{B}}$ and $18.94 \mathrm{a}^{\mathbf{A}} ; m / z 388\left(1.2 \%, \mathrm{M}^{+}\right), 140(100$, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SH}$) and 91 ($92, \mathrm{PhCH}_{2}$) (Found: $\mathrm{M}^{+}, 388.2088$. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 388.2072$).

($2 R S, 2^{\prime} S R, 2^{\prime \prime} S R, E$)-Ethyl 2-[2^{\prime}-($\mathbf{3}^{\prime \prime}$-methoxy- $\mathbf{2}^{\prime \prime}$-methyl-1"-propylidenyl)cyclohexyl]-2-(4-methoxyphenylsulfanyl)ethanoate 54

Aliquots of ethyl diazoacetate ($5 \times 10 \mathrm{~mm}^{3}, 0.475 \mathrm{mmol}$) and then a pre-cooled solution of tetrafluoroboric acid-diethyl
ether complex $(1: 1) \dagger$ in dry dichloromethane $(0.474 \mathrm{mmol}$ in 4 additions) were added alternately over 7 min to a solution of the allylic sulfide $7(89.0 \mathrm{mg}, 0.290 \mathrm{mmol})$ in dichloromethane (0.6 cm^{3}) under argon with light excluded at -75 to $-73^{\circ} \mathrm{C}$. After 4 min , $\operatorname{DBU}\left(96 \%, 120 \mathrm{~mm}^{3}, 0.770 \mathrm{mmol}\right)$ was added to the mixture which was then stirred at the same temperature for 20 min . After this the reaction was quenched by addition of glacial acetic acid ($50 \mathrm{~mm}^{3}, 0.87 \mathrm{mmol}$) to the mixture which was then poured into aqueous hydrochloric acid ($1.0 \mathrm{~mol} \mathrm{dm}^{-3} ; 20 \mathrm{~cm}^{3}$) and extracted with dichloromethane $\left(4 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure after which 90% of the mixture was separated by flash column chromatography on silica eluting with hexanediethyl ether ($2: 1$) to yield the ester 54 ($52.8 \mathrm{mg}, 51 \%, 95 \%$ pure) as an oil, together with a less pure mixture ($26.5 \mathrm{mg}, 26 \%$). Separation of the latter by HPLC failed and returned a poor yield of the ester ($6.3 \mathrm{mg}, 6 \% ; 90 \%$ pure); R_{F} [hexane-diethyl ether (2:1)] 0.46; $v_{\text {max }}$ (smear) $1730(\mathrm{C}=\mathrm{O}$), 1595 (Ar), 1575 (Ar), 1495 (Ar) and 830 (para disubstituted benzene); $\delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.37(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}), 6.79(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}), 5.11$ $(1 \mathrm{H}, \mathrm{d}, J 9.0=\mathrm{CH}), 3.98\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{MeCH}_{2} \mathrm{O}\right), 3.94(1 \mathrm{H}, \mathrm{d}$, J 11.7, CHS), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 3.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OMe}$), $3.22\left(1 \mathrm{H}, \mathrm{dd}, J 6.7\right.$ and $9.2, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OMe}$), $3.16(1 \mathrm{H}$, dd, $J 7.4$ and $\left.9.1, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OMe}\right), 2.74(1 \mathrm{H}$, dsextet, $J 8.9$ and 6.8 , $\mathrm{CHMe}), 2.59\left(1 \mathrm{H}\right.$, br d, $\left.J 11.5, \mathrm{CH}_{\text {eq }} . \mathrm{CHS}\right), 2.38(1 \mathrm{H}, \mathrm{dt}, J 13.5$ and 3.6, $\mathrm{C} H_{\text {eq. }} . \mathrm{H}_{a x} . \mathrm{C}=$), $1.87(1 \mathrm{H}$, unsymmetric dt, ca. J 3.6 and 12.8, $\left.\mathrm{CH}_{\text {eq. }} . H_{a x .} \mathrm{C}=\right), 1.80-1.48\left[5 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.40-1.23$ [$1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}$], $1.07(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{MeCH} 2 \mathrm{O})$ and $1.00(3 \mathrm{H}$, d, $J 6.7, \mathrm{CHMe}$; $\delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 172.33 \mathrm{~b}, 159.85 \mathrm{~b}$, 137.34b, 136.05a, 128.55a, 124.19b, 114.30a, 78.11b, 60.74b, $58.74 \mathrm{a}, 55.27 \mathrm{a}, 53.30 \mathrm{a}, 46.20 \mathrm{a}, 32.21 \mathrm{a}, 31.37 \mathrm{~b}, 27.84 \mathrm{~b}, 25.63 \mathrm{~b}$, 22.02b, 17.95a and 14.03a; $m / z 392\left(10 \%, \mathrm{M}^{+}\right), 226$ (31, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), 135 ($90, \mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SCH}_{2}{ }^{-}$ $\mathrm{CO}_{2} \mathrm{Et}$ and $\mathrm{MeO} \cdot$) and 110 ($100, \mathrm{PhSH}$) (Found: M^{+}, 392.2024. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~S}$ requires $M, 392.2021$).

Epimerisation of the homoallylic sulfide 54

A solution of the homoallylic sulfide $\mathbf{5 4}(7.8 \mathrm{mg}, 19.8 \mu \mathrm{~mol})$ and sodium ethoxide (from 2 mg of sodium, $87 \mu \mathrm{~mol}$) in ethanol ($1.5 \mathrm{~cm}^{3}$) was stirred at RT, with light excluded, for 3 d . The reaction mixture was quenched with saturated ammonium chloride, and then extracted twice with diethyl ether and then twice with dichloromethane. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a 64:36 mixture of the homoallylic sulfides 59:54 (7.2 $\mathrm{mg}, 93 \%$). From the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture, the spectrum of the homoallylic sulfide 59 could be derived; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.42(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{ArH}), 6.82(2 \mathrm{H}, \mathrm{d}$, $J 8.8, \mathrm{ArH}), 4.92(1 \mathrm{H}, J 9.0, \mathrm{C}=\mathrm{CH}), 3.98(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 3.81(1 \mathrm{H}$, assumed d, second peak obscured by MeOAr, CHS), 3.79 ($3 \mathrm{H}, \mathrm{s}$, ArOMe), 3.29 (3 H , s, $\mathrm{CH}_{2} \mathrm{OM}$), 3.15 (1 H , dd, J 6.5 and 9.2, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OMe}$), 3.09 $\left(1 \mathrm{H}, \mathrm{dd}, J 7.3\right.$ and $\left.9.2, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OMe}\right), 2.62(1 \mathrm{H}, \mathrm{m}$, obscured, $\mathrm{C} H \mathrm{Me}$), $2.51\left(1 \mathrm{H}, \mathrm{dt}, J 11.8\right.$ and 4.1, $\mathrm{CH}_{e q}$. CHS), $2.28\left(1 \mathrm{H}, \mathrm{dt}, J 14.1\right.$ and $\left.4.1, \mathrm{C}_{e q} . \mathrm{H}_{a x .} \mathrm{C}=\right), 2.23-2.13[1 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.98(1 \mathrm{H}$, unsymmetric dt, averaged $J 3.4$ and 12.7, $\mathrm{CH}_{\text {eq. }} \cdot H_{a x .} \mathrm{C}=$), $1.80-1.22[5 \mathrm{H}, \mathrm{m}$, integration poor, $\left.\left(\mathrm{CH}_{2}\right)_{3}\right], 1.13\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{Me}\right)$ and $0.84(3 \mathrm{H}, \mathrm{d}, J$ 6.7, CHMe).

(2RS, $2^{\prime} S R, 2^{\prime \prime} R S, E$)-Ethyl 2-[2'-($3^{\prime \prime}-$ methoxy-2"-methyl-1"-propylidenyl)cyclohexyl]-2-(4-methoxyphenylsulfanyl)ethanoate 55

Aliquots of ethyl diazoacetate ($5 \times 10 \mathrm{~mm}^{3}, 0.475 \mathrm{mmol}$) and then a pre-cooled solution of tetrafluoroboric acid-diethyl ether complex $(1: 1) \dagger$ in dry dichloromethane $\left(0.779 \mathrm{~mol} \mathrm{dm}^{-3}\right.$;

[^1]$2 \times 200 \mathrm{~mm}^{3}$, then $150 \mathrm{~mm}^{3}$, then $50 \mathrm{~mm}^{3}$) were added alternately over 6 min to a solution of the allylic sulfide $\mathbf{8}$ (92.4 $\mathrm{mg}, 0.301 \mathrm{mmol}$) in dichloromethane ($0.6 \mathrm{~cm}^{3}$), under argon, with light excluded, at -55 to $-50^{\circ} \mathrm{C}$. After 4 min DBU $(96 \%$; $1.20 \mathrm{~mm}^{3}, 0.770 \mathrm{mmol}$) was added to the mixture the temperature of which was allowed to rise from -50 to $-35^{\circ} \mathrm{C}$ over 16 min . After this the reaction mixture was poured into aqueous hydrochloric acid $\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3} ; 30 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane ($4 \times 20 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure and the residue was separated by flash column chromatography on silica (14 g) eluting with hexane-diethyl ether ($2: 1$) to give the ester 55 ($91.5 \mathrm{mg}, 77 \%, 89 \%$ purity) as an oil; R_{F} [hexanediethyl ether (2:1)] 0.34; $v_{\text {max }}$ (smear)/ $/ \mathrm{cm}^{-1} 1735(\mathrm{C}=\mathrm{O}), 1595$ (Ar), 1500 (Ar) and 830 (p-disubstituted); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 7.39 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}$), $6.81(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 5.12(1 \mathrm{H}, \mathrm{d}$, $J 9.0, \mathrm{C}=\mathrm{CH}), 4.00\left(2 \mathrm{H}\right.$, two q approx. $4 \times 10^{-3} \mathrm{ppm}$ apart, J 7.2 and $\left.J 7.1, \mathrm{CH}_{2} \mathrm{Me}\right), 3.93(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{CHS}), 3.78(3 \mathrm{H}, \mathrm{s}$, ArOMe), 3.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OMe}$), $3.31(1 \mathrm{H}$, dd, $J 5.5$ and 9.2 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OMe}\right), 3.16(1 \mathrm{H}$, unsymmetric $\mathrm{t}, J 8.2$ and 9.1 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OMe}\right), 2.74(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 2.59(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.6$, $\mathrm{CH}_{\text {eq. }} \mathrm{CHS}$), $2.40\left(1 \mathrm{H}, \mathrm{dt}, J 13.7\right.$ and $3.7, \mathrm{CH}_{\text {eq. }} . \mathrm{H}_{a x .} \mathrm{C}=$), 1.89 (1 H , unsymmetric dt, averaged $J 4.0$ and $12.7, \mathrm{CH}_{e q}, H_{a x} \mathrm{C}=$), $1.80-1.69\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.66-1.47\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.38-$ $1.22\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.08\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{Me}\right)$ and $1.01(3$ $\mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH} M e) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 172.35 \mathrm{~b}, 159.87 \mathrm{~b}$, 137.30b, 136.14a, 128.34a, 124.18b, 114.30a, 77.81b, 60.75b, $58.72 \mathrm{a}, 55.28 \mathrm{a}, 53.18 \mathrm{a}, 46.26 \mathrm{a}, 32.28 \mathrm{a}, 31.40 \mathrm{~b}, 27.82 \mathrm{~b}, 25.84 \mathrm{~b}$, 22.02b, 18.2la and 14.04a; $m / z 392\left(17 \%, \mathrm{M}^{+}\right)$, 226 (30 , $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), 135 ($81, \mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SCH}_{2}{ }^{-}$ $\mathrm{CO}_{2} \mathrm{Et}$ and MeO) and 110 (110 , PhSH) (Found: M^{+}, 392.1994. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~S}$ requires $M, 392.2021$).

Epimerisation of the homoallylic sulfide 55

A solution of the homoallylic sulfide 55 (92% purity; 7.6 mg , $17.9 \mu \mathrm{~mol}$) and sodium ethoxide (from 1.5 mg of sodium, 64.3 $\mu \mathrm{mol}$) in ethanol ($1.2 \mathrm{~cm}^{3}$) was stirred at RT, with light excluded, for 3 days. The reaction mixture was then quenched with saturated ammonium chloride, extracted twice with diethyl ether then twice with dichloromethane. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a 66:34 mixture of the homoallylic sulfides $\mathbf{6 0}: 55(87 \%$ purity $)$. From the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture the ${ }^{1} \mathrm{H}$ NMR of the homoallylic sulfide $\mathbf{6 0}$ could be derived; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.42(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 6.82$ (2 $\mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 4.89(1 \mathrm{H}, J 8.9, \mathrm{C}=\mathrm{CH}), 3.98(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 3.80(1 \mathrm{H}$, assumed d, second peak obscured by MeOAr of trans A, CHS), 3.79 ($3 \mathrm{H}, \mathrm{s}$, ArOMe), 3.25 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{OMe}$), 3.08 ($1 \mathrm{H}, \mathrm{dd}, J 5.9$ and 9.1, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OMe}$), 3.00 (1 H , unsymmetric $\mathrm{t}, J 7.8$ and $\left.9.1, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OMe}\right), 2.67-2.55(1 \mathrm{H}$, m , obscured, $\mathrm{C} H \mathrm{Me}$), $2.50\left(1 \mathrm{H}, \mathrm{dt}, J 11.9\right.$ and $4.3, \mathrm{CH}_{\text {eq }}$. CHS), $2.25\left(1 \mathrm{H}, \mathrm{dt}, J 14.0\right.$ and 4.3, $\left.\mathrm{CH}_{\text {eq. }} . \mathrm{H}_{a x .} \mathrm{C}=\right), 2.18-1.87[2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\text {eq. }} . H_{a x} \mathrm{C}=$ and $\left.\left(\mathrm{CH}_{2}\right)_{3}\right], 1.78-1.24[5 \mathrm{H}, \mathrm{m}$, integration poor, $\left.\left(\mathrm{CH}_{2}\right)_{3}\right], 1.13\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{Me}\right)$ and $0.91(3 \mathrm{H}, \mathrm{d}, J 6.6$, $\mathrm{CH} M e$).

(2RS,3SR,6SR, E)-Ethyl 7-methoxy-2-(4-methoxyphenyl-sulfanyl)-4,6-dimethyl-3-(2'-phenylethyl)hept-4-enoate 56

Aliquots of ethyl diazoacetate $\left(4 \times 15 \mathrm{~mm}^{3}, 0.713 \mathrm{mmol}, 1.6\right.$ equiv.) and then a pre-cooled solution of tetrafluoroboric aciddiethyl ether complex ($1: 1$) \dagger in dry dichloromethane $(0.717 \mathrm{~mol}$ $\mathrm{dm}^{-3} ; 5 \times 200 \mathrm{~mm}^{3}$) were added alternately over 9 min to a solution of the allylic sulfide $9(93 \%, 166.5 \mathrm{mg}, 0.481 \mathrm{mmol})$ under argon, with light excluded, at -54 to $-50^{\circ} \mathrm{C}$. After 6 $\min \operatorname{DBU}\left(96 \% ; 190 \mathrm{~mm}^{3}, 1.22 \mathrm{mmol}\right)$ was added to the mixture and the temperature allowed to rise from -52 to $-29^{\circ} \mathrm{C}$ over 22 min . After this the reaction was quenched by addition of glacial acetic acid $\left(2 \mathrm{~cm}^{3}\right)$ to the mixture which was then poured into aqueous hydrochloric acid ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 30 \mathrm{~cm}^{3}$) and
extracted with dichloromethane ($4 \times 20 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure after which 94% of the mixture was separated by flash column chromatography on silica (24 g) eluting with hexaneethyl acetate ($12: 1$ to $6: 1$) to yield the ester 56 ($109.1 \mathrm{mg}, 61 \%$; $>91 \%$ pure) as an oil; HPLC hexane-cthyl acetate ($6: 1$), $t_{\mathrm{R}} 21 \mathrm{~min}$ at $10 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ did not allow complete purification; $R_{\mathrm{F}}($ hexane-ethyl acetate $4: 1) 0.35 ; v_{\text {max }}(\mathrm{smear}) / \mathrm{cm}^{-1} 1729$ $(\mathrm{C}=\mathrm{O}), 1592(\mathrm{Ar}), 1570(\mathrm{Ar})$ and $1494(\mathrm{Ar}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.36\left(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{SC}_{6} H_{4} \mathrm{OMe}\right), 7.28-7.10(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 6.80\left(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{SC}_{6} H_{4} \mathrm{OMe}\right), 5.15(1 \mathrm{H}, \mathrm{d}, J 9.3, \mathrm{CH}=$), $3.96\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{Me}\right), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{MeOAr}), 3.56(1 \mathrm{H}$, d, J 11.3, CHS), $3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \mathrm{OCH}_{2}\right.$), $3.24(2 \mathrm{H}$, complex ABX secondary system, $\left.\mathrm{CH}_{2} \mathrm{OMe}\right), 2.80(1 \mathrm{H}$, dsextet, $J 9.1$ and 6.8, CHMe$), 2.64-2.33\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 1.74-1.50(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 1.65 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=$), $1.05\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{MeCH}_{2} \mathrm{O}\right.$) and $1.04(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 172.04 \mathrm{~b}$, 159.94b, 141.96b, 136.10a, 133.96a, 131.62b, 128.43a, 128.27a, $125.75 \mathrm{a}, 123.72 \mathrm{~b}, 114.32 \mathrm{a}, 77.9 \mathrm{lb}, 60.86 \mathrm{~b}, 58.74 \mathrm{a}, 55.58 \mathrm{a}$, 55.29a, 49.81a, 33.41b, 33.01a, 32.52b, 17.43a, 14.00a and $11.54 \mathrm{a} ; m / z 456\left(6 \%, \mathrm{M}^{+}\right)$and $135(100)$ (Found: $\mathrm{M}^{+}, 456.2379$. $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~S}$ requires $M, 456.2334$).

Epimerisation of the homoallylic sulfide 56: synthesis of

 (2RS,3RS,6RS,E)-ethyl 4,6-dimethyl-7-methoxy-2-(4-methoxy-phenylsulfanyl)-3-phenethylhept-4-enoate 61A mixture of the homoallylic sulfide $56(21.8 \mathrm{mg}, 47.6 \mu \mathrm{~mol})$ and sodium ethoxide (from 4.9 mg of sodium, 0.214 mmol) in ethanol ($2.4 \mathrm{~cm}^{3}$) was stirred for 3 days at RT and then quenched with saturated aqueous ammonium chloride $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether ($2 \times 10 \mathrm{~cm}^{3}$) and then dichloromethane ($2 \times 10 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a 1.05:1 ratio of $56: 61(19.5 \mathrm{mg}, 89 \%)$, from which a sample of the pure homoallylic sulfide 61 was obtained by flash column chromatography on silica with hexane-ethyl acetate (12:1) as eluent; $v_{\text {max }}$ (smear) $/ \mathrm{cm}^{-1} 3100-3040$ (ArH and $\mathrm{CH}=$), 1735 $(\mathrm{C}=0), 1595(\mathrm{Ar}), 1575(\mathrm{Ar})$ and $1495(\mathrm{Ar}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 7.34(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.31-7.17(5 \mathrm{H}, \mathrm{m}, \mathrm{PhH}), 6.78$ ($2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}$), $5.02(1 \mathrm{H}, \mathrm{d}, J 9.3, \mathrm{CH}=), 3.99(1 \mathrm{H}, \mathrm{dq}, J$ 11.0 and $\left.7.1, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{Me}\right), 3.96(1 \mathrm{H}, \mathrm{dq}, J 11.0$ and 7.1 , $\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{Me}$), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeOAr)} ,3.49(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{CHS}$), $3.18\left(1 \mathrm{H}\right.$, dd, $J 6.7$ and $\left.9.1, \mathrm{CH}_{\mathrm{D}} \mathrm{CH}_{\mathrm{E}} \mathrm{OMe}\right), 3.15(1 \mathrm{H}$, dd, $J 6.9$ and $\left.9.2, \mathrm{CH}_{\mathrm{D}} \mathrm{C} H_{\mathrm{E}} \mathrm{OMe}\right), 2.67(1 \mathrm{H}$, dsextet, $J 9.2$ and 6.7 , $\mathrm{CHMe}), 2.57(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHS}), 2.61-2.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 2.46-2.33 ($2 \mathrm{H}, \mathrm{m}$, one of each $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.75-1.60(1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.59(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=), 1.13\left(3 \mathrm{H}, \mathrm{t}, J 7.1, M e \mathrm{CH}_{2}\right)$ and $0.89(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{MeCH}) ; m / z 456\left(27 \%, \mathrm{M}^{+}\right), 226(54$, $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), $199\left(51, \mathrm{M}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SCHCO}_{2} \mathrm{Et}\right.$ and MeOH$), 110(72, \mathrm{PhSH})$ and $91\left(100, \mathrm{PhCH}_{2}\right)\left(\right.$ Found: M^{+}, 456.2370. $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~S}$ requires $M, 456.2334$).

(2RS,2'SR,2"SR,E)-Ethyl 2-[2'-(3"-methoxy-2"-methyl-1"-

 propylidenyl)cyclohexyl]-2-phenylsulfanylethanoate 57 Aliquots of ethyl diazoacetate ($5 \times 4 \mathrm{~mm}^{3}, 0.190 \mathrm{mmol}$) and then a pre-cooled solution of tetrafluoroboric acid-diethyl ether complex ($1: 1$) \dagger in dry dichloromethane ($1.06 \mathrm{~mol} \mathrm{dm}^{-3}$; $3 \times 30 \mathrm{~mm}^{3}$, then $45 \mathrm{~mm}^{3}$, then $42 \mathrm{~mm}^{3}$) were added alternately over 9 min to a solution of the syn allylic sulfide $\mathbf{1 0}$ ($32.6 \mathrm{mg}, 92.3 \mu \mathrm{~mol}$) in dichloromethane ($0.2 \mathrm{~cm}^{3}$), under argon, with light excluded, cooled in a solid CO_{2}-acetone bath. After $6 \mathrm{~min} \operatorname{DBU}\left(96 \%, 40 \mathrm{~mm}^{3}, 0.257 \mathrm{mmol}\right)$ was added to the mixture, the temperature of which was then allowed to rise to $-34^{\circ} \mathrm{C}$ over 45 min . After this, the reaction was quenched by the addition of glacial acetic acid $\left(40 \mathrm{~mm}^{3}\right)$ to the mixture which was then poured into aqueous hydrochloric acid ($1.0 \mathrm{~mol} \mathrm{dm}^{-3}$; $30 \mathrm{~cm}^{3}$) and extracted with dichloromethane ($4 \times 20 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure and the mixture was separated by flash column chromatography on silica (4 g) eluting with hexane-diethyl ether (2:1) to give the ester $57(26.2 \mathrm{mg}, 65 \%, 90 \%$ purity) as an oil; R_{F} [hexane-diethyl ether (2:1)] 0.46; $v_{\text {max }}($ smear $) / \mathrm{cm}^{-1} 1735(\mathrm{C}=0), 1575(\mathrm{Ph})$ and 740 and 690 (monosubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.45-7.42 (2 $\mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.34-7.23(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.13(1 \mathrm{H}, \mathrm{d}, J 9.0,=\mathrm{CH}), 4.52$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.09 ($1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{CHS}$), $4.00(2 \mathrm{H}, \mathrm{q}, J 7.2$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 3.32\left(1 \mathrm{H}, \mathrm{dd}, J 6.4\right.$ and $\left.9.0, \mathrm{C}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}} \mathrm{OBn}\right), 3.27(1 \mathrm{H}$, dd, $J 7.0$ and $\left.9.2, \mathrm{CH}^{\mathrm{A}} \mathrm{C} H^{\mathrm{B}} \mathrm{OBn}\right), 2.79(1 \mathrm{H}$, dsextet, $J 8.9$ and $6.8, \mathrm{C} H \mathrm{Me}), 2.64\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.5, \mathrm{CH}_{\text {eq }} . \mathrm{CHS}\right), 2.40(1 \mathrm{H}, \mathrm{dt}, J$ 13.7 and $\left.c a .4 .3, \mathrm{CH}_{\text {eq }} . \mathrm{H}_{a x} . \mathrm{C}=\right), 1.87(1 \mathrm{H}, \mathrm{dt}, J c a .8 .5$ and 13.0 , $\left.\mathrm{CH}_{e q} . H_{a x} \mathrm{C}=\right), 1.77-1.48\left[5 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.36-1.19[1 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{3}\right], 1.06\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{Me}\right)$ and $1.03(3 \mathrm{H}, \mathrm{d}, J 6.8$, $\mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 172.32 \mathrm{~b}, 138.72 \mathrm{~b}, 137.14 \mathrm{~b}$, 134.24b, 132.93a, 128.86a, 128.75, 128.29a, 127.59a, 127.49a, 127.40a, 75.56b, 72.88b, 60.87b, 52.26a, 46.38a, 32.43a, 31.29b, $27.74 \mathrm{~b}, 25.60 \mathrm{~b}, 22.01 \mathrm{~b}, 18.03 \mathrm{a}$ and 13.99a.

(2RS, $\mathbf{2}^{\prime}$ SR, $\mathbf{2}^{\prime \prime}$ RS, E)-Ethyl 2-[2^{\prime}-($3^{\prime \prime}$-methoxycarbonyl-2"-methyl-1"-propylidenyl)cyclohexyl]-2-(4-methoxyphenylsulfanyl)ethanoate 58

Aliquots of ethyl diazoacetate ($5 \times 9 \mathrm{~mm}^{3}, 0.428 \mathrm{mmol}$) and then a pre-cooled solution of tetrafluoroboric acid-diethyl ether complex $(1: 1) \dagger$ in dry dichloromethane $\left(0.768 \mathrm{~mol} \mathrm{dm}^{-3}\right.$; $4 \times 100 \mathrm{~mm}^{3}$, then $160 \mathrm{~mm}^{3}$) were added alternately over 8 min to a solution of the anti allylic sulfide $19(92.4 \mathrm{mg}, 0.301 \mathrm{mmol})$ in dichloromethane ($0.6 \mathrm{~cm}^{3}$), under argon, with light excluded, at $<-72{ }^{\circ} \mathrm{C}$. After 3 min DBU $\left(96 \% ; 120 \mathrm{~mm}^{3}, 0.770 \mathrm{mmol}\right)$ was added to the mixture which was then stirred for 30 min and finally treated with glacial acetic acid ($75 \mathrm{~mm}^{3}, 1.31 \mathrm{mmol}$) to quench the reaction. The mixture was then poured into aqueous hydrochloric acid ($1.0 \mathrm{~mol} \mathrm{dm}^{-3} ; 25 \mathrm{~cm}^{3}$) and extracted with dichloromethane ($4 \times 20 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure and the residue was separated by flash column chromatography on silica (11 g) eluting with hexane-ethyl acetate ($8: 1$) to give the diester 58 ($66.3 \mathrm{mg}, 69 \%$; $>93 \%$ purity) as an oil; R_{F} [hexaneethyl acetate (4:1)] 0.28; $v_{\max }$ (smear)/ $/ \mathrm{cm}^{-1} 1735$ ($\mathrm{C}=\mathrm{O}$), 1595 (Ar), 1575 (Ar), 1495 (Ar) and 830 (p-disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.37(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 6.80(2 \mathrm{H}, \mathrm{d}, J$ $8.8, \mathrm{ArH}), 5.36(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{CH}=), 3.99(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\mathrm{CH}_{2} \mathrm{Me}$), 3.89 ($1 \mathrm{H}, \mathrm{d}, J 11.6$, CHS), 3.78 ($3 \mathrm{H}, \mathrm{s}$, ArOMe), 3.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $3.43(1 \mathrm{H}, \mathrm{dq}, J 9.2$ and $7.0, \mathrm{MeC} H), 2.61(1 \mathrm{H}$, br d, $J 11.4, \mathrm{C}_{\text {eq. }}$ CHS), $2.37(1 \mathrm{H}, \mathrm{dt}, J 13.9$ and 4.2, $\left.\mathrm{CH}_{e q} . \mathrm{H}_{a x} \mathrm{C}=\right), 1.93\left(1 \mathrm{H}, \mathrm{dt}, J 4.2\right.$ and $\left.13.0, \mathrm{CH}_{e q} . H_{a x .} \mathrm{C}=\right), 1.79-$ $1.70\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.66-1.49\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.37-1.25$ $\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.25(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CH} M e)$ and $1.10(3 \mathrm{H}, \mathrm{t}, J$ $\left.7.1, \mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.39 \mathrm{~b}, 172.09 \mathrm{~b}, 159.94 \mathrm{~b}$, $139.45 \mathrm{~b}, 136.30 \mathrm{a}, 124.56 \mathrm{a}, 124.05 \mathrm{~b}, 114.30 \mathrm{a}, 60.80 \mathrm{~b}, 55.28 \mathrm{a}$, $53.38 \mathrm{a}, 51.72 \mathrm{a}, 46.07 \mathrm{a}, 38.08 \mathrm{a}, 31.45 \mathrm{~b}, 27.72 \mathrm{~b}, 25.90 \mathrm{~b}, 22.08 \mathrm{~b}$, 18.26a and 14.04a; $m / z 406\left(21, \mathrm{M}^{+}\right), 226\left(26, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right.$ $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), $181 \quad\left(41, \quad \mathrm{M}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SCHCO}_{2} \mathrm{Et}\right), \quad 149$ ($41, \mathrm{M}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SCHCO}_{2} \mathrm{Et}$ and MeOH), 121 (37, $\mathrm{M}-$ $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SCHCO}_{2} \mathrm{Et}$, MeOH and CO) and 110 (100 , PhSH) (Found: M^{+}, 406.1853. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~S}$ requires M, 406.1813).

(2RS,2'SR,2"SR,E)-2-[2'-(3"-Methoxy-2"-methyl-1"-propyl-idenyl)cyclohexyl]-2-(4-methoxyphenylsulfanyl)ethanol 66

 Lithium aluminium hydride ($95 \% ; 4.4 \mathrm{mg}, 0.109 \mathrm{mmol}$) was added to a stirred solution of the ester $54(43.0 \mathrm{mg}, 0.110 \mathrm{mmol})$ in dry diethyl ether $\left(0.55 \mathrm{~cm}^{3}\right)$, with light excluded, at $-7^{\circ} \mathrm{C}$. Stirring was continued for 4 h between -7 and $8^{\circ} \mathrm{C}$ and then for 5.5 h at RT. The reaction was then quenched by the addition of aq. potassium sodium tartrate ($1 \mathrm{~mol} \mathrm{dm}{ }^{3} ; 20 \mathrm{~cm}^{3}$) to the mixture which was then extracted with diethyl ether (2×20 cm^{3}). Aqueous sodium hydroxide ($10 \% ; 10 \mathrm{~cm}^{3}$) was added to the aqueous mother-liquor and the mixture extracted with dichloromethane $\left(2 \times 25 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure and the mixture was separated by flash column chromatographyon silica (4.5 g) with hexane-diethyl ether ($1: 1$) as eluent to yield the alcohol $66(26.0 \mathrm{mg}, 68 \%)$ as an oil; diastereoisomeric ratio 89.8:5.8:4.4. The ${ }^{1} \mathrm{H}$ NMR and the IR spectra were taken on a 97.2:2.8 diastereoisomeric mixture and only the characterisation of the major diastereoisomer is given; R_{F} [dichloromethane-methanol (50:1)] 0.47; $v_{\max }$ (smear) 3448 (OH), 1592 (Ar), 1570 (Ar), 1493 (Ar) and 828 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}\right.$; $\left.\mathrm{CDCl}_{3}\right) 7.37(2 \mathrm{H}, J 8.8$, $\mathrm{ArH}), 6.82(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 4.99(1 \mathrm{H}, \mathrm{d}, J 9.0,=\mathrm{CH}), 3.79(3$ $\mathrm{H}, \mathrm{s}, \mathrm{MeOAr}), 3.57\left(1 \mathrm{H}\right.$, dd, $J 3.6$ and $11.9, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OH}$), 3.55 ($1 \mathrm{H}, \mathrm{dd}, J 4.3$ and $\left.11.9, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 3.36(1 \mathrm{H}, \mathrm{dt}, J 10.3$ and $4.0, \mathrm{CHS}$), $3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \mathrm{OCH}_{2}\right), 3.23(1 \mathrm{H}$, dd, $J 6.4$ and 9.1 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OMe}\right), 3.16\left(1 \mathrm{H}, \mathrm{dd}, J 7.4\right.$ and $\left.9.1, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OMe}\right)$, 2.74 (1 H , dsextet, $J 8.8$ and $6.8, \mathrm{C} H \mathrm{Me}$), $2.40-2.28(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\text {eq. }} \cdot \mathrm{H}_{a x .} \mathrm{C}=, \mathrm{CHCHS}\right), 2.06(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.01(1 \mathrm{H}$, unsymmetric dt, $J c a .3 .6$ and 12.3, $\left.\mathrm{CH}_{\text {eq. }} . H_{a x .} \mathrm{C}=\right), 1.78-1.24$ [6 $\mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}$] and $1.01(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{MeCH}) ; \delta_{\mathrm{C}}(400 \mathrm{MHz}$; CDCl_{3}) $159.57 \mathrm{~b}, 139.47 \mathrm{~b}, 135.71 \mathrm{a}, 126.90 \mathrm{a}, 124.35 \mathrm{~b}, 114.58 \mathrm{a}$, $78.19 \mathrm{~b}, 60.04 \mathrm{~b}, 58.75 \mathrm{a}, 55.31 \mathrm{a}, 54.33 \mathrm{a}, 44.73 \mathrm{a}, 32.13 \mathrm{a}, 30.21 \mathrm{~b}$, $28.02 \mathrm{~b}, 26.3 \mathrm{lb}, 22.44 \mathrm{~b}$ and $17.98 \mathrm{a} ; m / z 350\left(6 \%, \mathrm{M}^{+}\right)$, 183 (37, $\mathrm{M}-\mathrm{CO}$ and $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}$) and $139\left(100, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right)$ (Found: $\mathrm{M}^{+}, 350.1901 . \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~S}$ requires $\left.M, 350.1916\right)$.
($2 R S, 2^{\prime} S R, 2^{\prime \prime} S R, E$)-2-[2'-(3"-Methoxy-2"-methyl-1"-propyl-idenyl)cyclohexyl]-2-(4-methoxyphenylsulfanyl)ethyl 3,5-dinitrobenzoate 67
3,5-Dinitrobenzoyl chloride (freshly prepared, $18.6 \mathrm{mg}, 80.7$ $\mu \mathrm{mol}$) was added to a stirred solution of the alcohol 66 ($19.6 \mathrm{mg}, 55.8 \mu \mathrm{~mol}$) and DMAP ($9.7 \mathrm{mg}, 79.2 \mu \mathrm{~mol}$) in dry dichloromethane ($0.28 \mathrm{~cm}^{3}$) under argon, at RT. After 15 min the reaction mixture was separated by flash column chromatography on silica (3.5 g) eluting with hexane-ethyl acetate (4:1) to give the ester 67 as a yellow crystalline solid $(87 \%, 26.4 \mathrm{mg})$ of roughly the same diastereoisomeric ratio as the alcohol; recrystallisation of this from diethyl ether at $-20^{\circ} \mathrm{C}$ removed the unwanted minor diastereoisomer and further recrystallisation from hexane-diethyl ether gave the pure yellow needles; R_{F} [hexane-ethyl acetate (4:1)] 0.32 and (dichloromethane) $0.19 ; v_{\text {max }}($ Nujol mull) $3110(=\mathrm{CH}$ or ArH), $1745(\mathrm{C}=0$), $1630(\mathrm{C}=\mathrm{C}), 1590$ (Ar), 1495 (Ar) and 830 (pdisubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.19[1 \mathrm{H}, \mathrm{t}, J 2.1$, para proton of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}\right], 8.94[2 \mathrm{H}, \mathrm{d}, J 2.1$, ortho protons of $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}$], $7.35(2 \mathrm{H}, \mathrm{d}, J$ 8.7, protons ortho to S of $\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{OMe}$), 6.67 ($2 \mathrm{H}, \mathrm{d}, J$ 8.7, protons meta to S of $\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{OMe}$), $5.08(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{C}=\mathrm{CH})$, $4.69(1 \mathrm{H}, \mathrm{dd}, J 3.9$ and 11.6, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OCOAr}\right), 4.56(1 \mathrm{H}$, dd, $J 6.4$ and 11.6 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OCOAr}\right), 3.72(1 \mathrm{H}$, ddd, $J 3.8,6.3$ and 9.1, CHS $), 3.66$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeOAr}$), 3.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OMe}$), 3.26 (1 H , dd, J 6.6 and $\left.9.2, \mathrm{CH}_{\mathrm{D}} \mathrm{H}_{\mathrm{E}} \mathrm{OMe}\right), 3.19(1 \mathrm{H}$, dd, $J 6.9$ and 9.1 , $\mathrm{CH}_{\mathrm{D}} H_{\mathrm{E}} \mathrm{OMe}$), 2.77 (1 H , dsextet, $J 8.7$ and 6.8, CHMe), 2.42$2.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H_{e q}\right.$. CHS and $\left.\mathrm{CH}_{e q} . \mathrm{H}_{\mathrm{ax}} \mathrm{C}=\right), 2.17(1 \mathrm{H}$, unsymmetric dt, averaged $J 3.7$ and $\left.12.2, \mathrm{CH}_{e q} . H_{a x .} \mathrm{C}=\right), 1.80-$ $1.40\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right]$ and $1.00(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe})$.

(2RS,3SR,6SR,E) 7-Methoxy-2-(4-methoxyphenylsulfanyl)-4,6-dimethyl-3-phenethylhept-4-en-1-ol 68

Lithium aluminium hydride ($95 \% ; 6.1 \mathrm{mg}, 0.152 \mathrm{mmol}$) was added to a stirred solution of the ester $56(72.5 \mathrm{mg}, 0.159 \mathrm{mmol})$ in dry diethyl ether $\left(0.8 \mathrm{~cm}^{3}\right)$, with light excluded, at RT. Stirring was continued for 1 h 50 min after which the reaction was quenched by addition of brine ($25 \mathrm{~cm}^{3}$) to the mixture which was then extracted with diethyl ether $\left(4 \times 25 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure and the mixture separated by flash column chromatography on silica (6 g) with hexane-ethyl acetate (4:1) as eluent to yield the alcohol $68(53.3 \mathrm{mg}, 81 \%)$ as an oil; $R_{\mathrm{F}}\left[\right.$ hexane-ethyl acetate (4:1)] $0.17 ; \nu_{\text {max }}(\mathrm{smear}) / \mathrm{cm}^{-1} 3449$ $(\mathrm{OH}), 1592$ (Ar), $1570(\mathrm{Ar}), 1493(\mathrm{Ar})$ and 829 (para disubstituted benzene); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.34(2 \mathrm{H}, \mathrm{d}, J 8.7$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 7.30-7.13(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.81(2 \mathrm{H}, \mathrm{d}, J 8.7$,
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$), 5.08 ($1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{CH}=$), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeOAr}$), $3.58\left(1 \mathrm{H}, \mathrm{dd}, J 4.4\right.$ and $\left.12.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.54(1 \mathrm{H}, \mathrm{dd}, J 4.4$ and $\left.12.2, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \mathrm{OCH}_{2}\right), 3.23(2 \mathrm{H}, \mathrm{d}, J$ 6.8, MeOCH_{2}), $3.08(1 \mathrm{H}, \mathrm{dt}, J 8.4$ and 4.4, CHS $), 2.79(1 \mathrm{H}$, dsextet, $J 9.1$ and 6.8$), 2.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ or $\left.\mathrm{CHC}=\right), 2.45-$ $2.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ and/or $\left.\mathrm{CHC}=\right), 1.89(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 1.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=$), $1.77-1.60(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$) and 1.02 ($3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{MeCH}$); $\delta_{\mathrm{C}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 159.54 \mathrm{~b}, 142.40 \mathrm{~b}, 135.44 \mathrm{a}, 133.94 \mathrm{~b}, 131.80 \mathrm{a}, 128.42 \mathrm{a}$, 128.31a, 125.73a, 124.67b, 114.61a, 77.91b, 60.89b, 58.72a, 56.97a, 55.31a, 48.49a, 33.78b, 32.89a, 31.4lb, 17.39a and 13.60a; $m / z 414\left(7 \%, \mathrm{M}^{+}\right), 139\left(47, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right), 135(49)$ and 91 (100, PhCH_{2}) (Found: $\mathrm{M}^{+}, 414.2236 . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 414.2228)$.

($1 R S, 2^{\prime} S R, 5^{\prime} R S$)-1-($7^{\prime}-$ Methoxy $\mathbf{4}^{\prime}, 6^{\prime}$-dimethyl-4'-phenylhept-$4^{\prime}$-en-3'-yl)oxirane 69

Trimethyloxonium tetrafluoroborate $(46.2 \mathrm{mg}, 0.312 \mathrm{mmol})$ was added in a number of aliquots over 1 h 25 min to a stirred solution of the alcohol $68(42.3 \mathrm{mg}, 0.102 \mathrm{mmol})$ in dry dichloromethane ($1.0 \mathrm{~cm}^{3}$) at RT followed by aqueous sodium hydroxide ($10 \% ; 1.4 \mathrm{~cm}^{3}$). Stirring was continued for 3 h after which the reaction mixture was neutralised with saturated aqueous ammonium chloride ($50 \mathrm{~cm}^{3}$) and extracted with dichloromethane $\left(4 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure and flash column chromatography of the residue on silica eluting with hexane-ethyl acetate (8:1) yielded the epoxide 69 (18.3 mg , 65%) as a colourless oil, purity $>90 \%$. Attempts to purify the product further by HPLC and preparative TLC failed to improve the quality of the sample; R_{F} [hexane-ethyl acetate (4:1)] 0.4, pale under UV, stains strongly yellow with KMnO_{4}; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.30-7.16(5 \mathrm{H}, \mathrm{m}, \mathrm{PhH}), 5.02(1 \mathrm{H}, \mathrm{d}, J$ $9.1, \mathrm{C}=\mathrm{CH}$), 3.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.23(1 \mathrm{H}, \mathrm{dd}, J 6.9$ and 8.8 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OMe}\right), 3.19\left(1 \mathrm{H}, \mathrm{dd}, J 6.9\right.$ and 9.2, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OMe}\right), 2.88$ $\left(1 \mathrm{H}\right.$, unsymmetric dt, averaged $J 7.0$ and $3.4, \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{\text {trans }}{ }^{-}$ $\mathrm{H}_{\text {cis }}$), $2.72(1 \mathrm{H}$, dsextet, partially obscured, $J 9.0$ and 6.7 , $\mathrm{CHMe}), 2.70\left(1 \mathrm{H}\right.$, unsymmetric $\mathrm{t}, J 4.1$ and $4.6, \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{\text {trans }}{ }^{-}$ $\left.H_{\text {cis }}\right), 2.60[1 \mathrm{H}$, dd, $J 5.6$ and 9.8, distortion in ABX system leads to the smaller dd being too small to observe, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}$], 2.55 [1 H, dd, $J 7.2$ and 9.2 , distortion in ABX system leads to the smaller dd being too small to observe, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right], 2.47$ $\left[1 \mathrm{H}, \mathrm{dd}, J 2.7\right.$ and $\left.5.0, \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{\text {trans }} \mathrm{H}_{\text {cis }}\right], 2.01-1.70(3 \mathrm{H}$, $\mathrm{m}, \mathrm{CHC}=$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.68[3 \mathrm{H}, \mathrm{d}, J 0.9, \mathrm{MeC}=]$ and 0.97 ($3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CH} M e$).

Acknowledgements

We thank SERC for support and R. Mortishire-Smith for running the COSY spectrum.

References

1 R. C. Hartley, S. Warren and I. C. Richards, Tetrahedron Lett., 1992, 33, 8155.
2 R. C. Hartley, S. Warren and I. C. Richards, J. Chem. Soc., Perkin Trans. I, 1994, 507.
3 R. W. Hoffmann, Angew. Chem., Int. Ed. Engl., 1979, 18, 563; I. E. Markó, in Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and G. Pattenden, Pergamon Press, Oxford, 1990, vol. 3, ch. 3.10.
4 For example: P. A. Grieco, J. Org. Chem., 1973, 38, 2572; G. M. Blackburn and W. D. Ollis, J. Chem. Soc., Chem. Commun., 1968,

1261; S. Julia, C. Huyn and V. Ratovelomanana, Bull. Soc. Chim. Fr., 1977, 710.
5 R. W. Hoffmann, Chem. Rev., 1989, 89, 1841.
6 E. Vedejs, Acc. Chem. Res., 1984, 17, 358; V. Ceré, C. Paolucci, E. Sandri and A. Fava, J. Org. Chem., 1981, 46, 3315; V. Ceré, C. Paolucci, E. Sandri and A. Fava, J. Org. Chem., 1979, 44, 4128; V. Ceré, C. Paolucci, E. Sandri and A. Fava, J. Org. Chem., 1978, 43, 4826.
7 V. K. Aggarwal and S. Warren, Tetrahedron Lett., 1987, 28, 1925; V. K. Aggarwal and S. Warren, Tetrahedron Lett., 1986, 27, 101.

8 M. Ballestra, J. Kallmerton and M. D. Wittman, Tetrahedron Lett., 1988, 29, 6905; T. Nakai and K. Mikami, Chem. Rev., 1986, 86, 885 ; Y. Yamamoto, J. Oda and Y. Inouye, J. Org. Chem., 1976, 41, 303.

9 E. Vedejs and M. J. Mullins, J. Org. Chem., 1979, 44, 2947; M. Yoshimoto, S. Ishara, E. Nakayama and N. Soma, Tetrahedron Lett., 1972, 13, 2923.
10 Z. Kosarych and T. Cohen, Tetrahedron Lett., 1982, 23, 3019.
11 R. S. Garigipati, R. Cordova, M. Parvez and S. M. Weinreb, Tetrahedron, 1986, 42, 2979.
12 B. M. Trost and R. F. Hammen, J. Am. Chem. Soc., 1973, 95, 962; S. H. Tahir, M. M. Olmstead and M. J. Kurth, Tetrahedron Lett., 1991, 32, 335; M. J. Kurth, S. H. Tahir and M. M. Olmstead, J. Org. Chem., 1990, 55, 2286.

13 P. C. Cagle, A. M. Arif and J. A. Gladysz, J. Am. Chem. Soc., 1994, 116, 3655.
14 F. Kido, Y. Kawada, M. Kato and A. Yoshikoshi, J. Chem. Soc., Chem. Commun., 1994, 32, 789 and ref. 1 therein; S. Mageswaran, W. D. Ollis and I. O. Sutherland, J. Chem. Soc., Perkin Trans. I, 1981, 1953; E. Vedejs and M. J. Mullins, J. Org. Chem., 1979, 44, 2947.

15 K. Kondo and I. Ojima, J. Chem. Soc., Chem. Commun., 1972, 62; R. W. Case, A. M. Davies, W. D. Ollis, C. Smith and I. O. Sutherland, J. Chem. Soc., Chem. Commun., 1969, 293.

16 V. K. Aggarwal, I. Coldham, S. McIntyre and S. Warren, J. Chem. Soc., Perkin Trans. I, 1991, 451.
17 Y. D. Wu and K. N. Houk, J. Org. Chem., 1991, 56, 5657.
18 A. de Groot and B. J. M. Jansen, Tetrahedron Lett., 1981, 22, 887; A. de Groot and B. J. M. Jansen, Synthesis, 1985, 434.

19 C. H. Heathcock, in Asymmetric Synthesis, ed. J. D. Morrison, Academic, Orlando, 1984, vol. 3, p. 111.
20 K. Chibale, R. C. Hartley, K. Jenkins, M. Simons, S. Warren and I. C. Richards, Tetrahedron Lett., 1993, 34, 6783. Compare this to the smooth lactonisation observed with imides: K. Chibale and S. Warren, Tetrahedron Lett., 1992, 33, 4369.

21 F. H. Sansbury and S. Warren, Tetrahedron Lett., 1992, 33, 539; F. H. Sansbury and S. Warren, Tetrahedron Lett., 1991, 32, 3425 ; S. McIntyre and S. Warren, Tetrahedron Lett., 1990, 31, 3457; V. K. Aggarwal, I. Coldham, S. McIntyre, F. H. Sansbury, M. J. Villa and S. Warren, Tetrahedron Lett., 1988, 29, 4885.

22 A. Merz, Angew. Chem., Int. Ed. Engl., 1973, 12, 846.
23 S. Czernecki, C. Georgoulis and C. Provelenghiou, Tetrahedron Lett., 1976, 17, 3535.
24 C. H. Heathcock, M. C. Pirrung, S. H. Montgomery and J. Lampe, Tetrahedron, 1981, 37, 4087.
25 W. R. Roush, J. Org. Chem., 1991, 56, 4151.
26 K. Chibale and S. Warren, J. Chem. Soc., Perkin Trans. I, 1995, 2411 ; V. K. Aggarwal, Ph.D. Thesis, University of Cambridge, 1986.

27 S. A. McIntyre, Ph.D. Thesis, University of Cambridge, 1988.
28 C. H. Behrens, S. Y. Ko, K. B. Sharpless and F. J. Walker, J. Org. Chem., 1985, 50, 5687.
29 A. Fischi and P. M. Muller, Helv. Chim. Acta, 1980, 63, 529.
30 D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, McGraw-Hill, London, 4th edn., 1987, p. 130.
31 L. Gattermann, Ber. Dtsch. Chem. Ges., 1889, 32, 1136; J. Drabowicz and M. Mikolajcyzk, Synthesis, 1980, 33.

Paper 5/04692K
Received 17th July 1995
Accepted 20th September 1995

[^0]: * $=$ no NOE. ${ }^{a} \mathrm{~s}=$ strong NOE, $\mathrm{m}=$ medium NOE, $\mathrm{w}=$ weak NOE.

[^1]: \dagger Solutions in dichloromethane were made from tetrafluoroboric acid diethyl ether complex 85% ex Aldrich.

